The Effectiveness of Smart Waste Recycling Management Applications
DOI:
https://doi.org/10.70356/josapen.v2i2.33Keywords:
Smart waste recycling management, IoT sensors, Big data analyticsAbstract
This study evaluates the effectiveness of smart waste recycling management applications, which leverage IoT sensors, AI algorithms, and big data analytics to enhance waste management efficiency. Analyzing data from five regions, it is evident that these technologies have significantly improved waste collection efficiency and recycling rates. IoT sensors optimized collection routes, resulting in a 15-23% increase in efficiency and a 10-17% rise in recycling rates, while reducing operational costs by $9,000 to $13,000 per month. AI algorithms enhanced sorting accuracy and recycling rates, particularly in regions with diverse waste types, leading to an 18% improvement in efficiency and up to a 20% increase in recycling rates. Big data analytics facilitated better decision-making and long-term planning, contributing to a 15-20% efficiency boost and a 12-17% rise in recycling rates. These findings underscore the potential of smart waste management technologies to transform waste management practices, highlighting the need for continued investment and expansion of these systems.
Downloads
References
D. B. Olawade et al., “Smart waste management: A paradigm shift enabled by artificial intelligence,” Waste Manag. Bull., vol. 2, no. 2, pp. 244–263, 2024, doi: 10.1016/j.wmb.2024.05.001.
A. Kumar, “A novel framework for waste management in smart city transformation with industry 4.0 technologies,” Res. Glob., vol. 9, no. June, p. 100234, 2024, doi: 10.1016/j.resglo.2024.100234.
M. Zhang, J. Tao, H. Jia, and X. Wang, “Oo F Oo F,” Sci. York, no. 1, pp. 2–5, 2012, doi: 10.1016/j.heliyon.2024.e36271.
S. Rai, A. Gurung, H. Bhakta Sharma, V. Prakash Ranjan, and V. Ravi Sankar Cheela, “Sustainable solid waste management challenges in hill cities of developing Countries: Insights from eastern Himalayan smart cities of Sikkim, India,” Waste Manag. Bull., vol. 2, no. 2, pp. 1–18, 2024, doi: 10.1016/j.wmb.2024.02.009.
X. Chen, “Machine learning approach for a circular economy with waste recycling in smart cities,” Energy Reports, vol. 8, pp. 3127–3140, 2022, doi: 10.1016/j.egyr.2022.01.193.
L. Barth, L. Schweiger, R. Benedech, and M. Ehrat, “From data to value in smart waste management: Optimizing solid waste collection with a digital twin-based decision support system,” Decis. Anal. J., vol. 9, no. October, p. 100347, 2023, doi: 10.1016/j.dajour.2023.100347.
P. Zoumpoulis, F. K. Konstantinidis, G. Tsimiklis, and A. Amditis, “Smart bins for enhanced resource recovery and sustainable urban waste practices in smart cities: A systematic literature review,” Cities, vol. 152, no. June, p. 105150, 2024, doi: 10.1016/j.cities.2024.105150.
A. M. Eladly, A. M. Abed, M. H. Aly, and W. M. Salama, “Enhancing circular economy via detecting and recycling 2D nested sheet waste using Bayesian optimization technique based-smart digital twin,” Results Eng., vol. 20, no. October, p. 101544, 2023, doi: 10.1016/j.rineng.2023.101544.
D. Kannan, S. Khademolqorani, N. Janatyan, and S. Alavi, “Smart waste management 4.0: The transition from a systematic review to an integrated framework,” Waste Manag., vol. 174, no. September 2023, pp. 1–14, 2024, doi: 10.1016/j.wasman.2023.08.041.
S. Saha and R. Chaki, “IoT based smart waste management system in aspect of COVID-19,” J. Open Innov. Technol. Mark. Complex., vol. 9, no. 2, p. 100048, 2023, doi: 10.1016/j.joitmc.2023.100048.
D. I. Hussain, D. A. Elomri, D. L. Kerbache, and D. A. El Omri, “Smart city solutions: Comparative analysis of waste management models in IoT-enabled environments using multiagent simulation,” Sustain. Cities Soc., vol. 103, no. February, p. 105247, 2024, doi: 10.1016/j.scs.2024.105247.
A. Idrissi, R. Benabbou, J. Benhra, and M. El Haji, “Smart Waste Collection Based on Vehicle Routing Optimization: Case of Casablanca City,” Procedia Comput. Sci., vol. 236, pp. 194–201, 2024, doi: 10.1016/j.procs.2024.05.021.
A. Martikkala, B. Mayanti, P. Helo, A. Lobov, and I. F. Ituarte, “Smart textile waste collection system – Dynamic route optimization with IoT,” J. Environ. Manage., vol. 335, no. February, 2023, doi: 10.1016/j.jenvman.2023.117548.
R. H. Filho, W. A. de Brito, M. G. Paiva, P. A. Cavaignac Klemensov, and L. S. de Oliveira, “A Sustainable Recycling Ecosystem Scheme based on IoT to Promote Social Benefits,” Procedia Comput. Sci., vol. 238, no. 2019, pp. 344–351, 2024, doi: 10.1016/j.procs.2024.06.034.
F. K. Konstantinidis et al., “Multi-modal sorting in plastic and wood waste streams,” Resour. Conserv. Recycl., vol. 199, no. October, p. 107244, 2023, doi: 10.1016/j.resconrec.2023.107244.
M. Rodrigues, V. Miguéis, S. Freitas, and T. Machado, “Machine learning models for short-term demand forecasting in food catering services: A solution to reduce food waste,” J. Clean. Prod., vol. 435, no. December 2023, 2024, doi: 10.1016/j.jclepro.2023.140265.
G. Addae, S. Oduro-Kwarteng, B. Fei-Baffoe, M. A. D. Rockson, E. Antwi, and J. X. F. Ribeiro, “Patterns of waste collection: A time series model for market waste forecasting in the Kumasi Metropolis, Ghana,” Clean. Waste Syst., vol. 4, no. February, p. 100086, 2023, doi: 10.1016/j.clwas.2023.100086.
O. O. Ayeleru et al., “Estimating plastic waste generation using supervised time-series learning techniques in Johannesburg, South Africa,” Heliyon, vol. 10, no. 7, p. e28199, 2024, doi: 10.1016/j.heliyon.2024.e28199.
S. E. Bibri, J. Huang, and J. Krogstie, “Artificial intelligence of things for synergizing smarter eco-city brain, metabolism, and platform: Pioneering data-driven environmental governance,” Sustain. Cities Soc., vol. 108, no. May, p. 105516, 2024, doi: 10.1016/j.scs.2024.105516.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Beni Sulistio, Ahmad S
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.