Naive Bayes-based Visualization of Disease-related Data in Muara Telang Public Health Centers
DOI:
https://doi.org/10.70356/jafotik.v1i2.18Keywords:
Community Health Centers, Health Management, Data Visualization, Naive Bayes Algorithm, Public Health AwarenessAbstract
This study addresses the imperative need for active and efficient management of Community Health Centers (Puskesmas) in Indonesia, as mandated by the Minister of Health's Regulation. The role of these centers in managing and planning health development within their work areas is crucial for comprehensive, integrated, acceptable, and affordable health efforts. The utilization of visualization, particularly through computer technology, emerges as a vital tool for conveying complex health data to the public, facilitating quicker understanding and informed decision-making. Focusing on the Sumber Marga Telang Health Center in South Sumatra Province, the research employs a structured waterfall model for system development. The Naive Bayes algorithm is utilized to classify internal and eye diseases, offering a practical solution to the challenge of conveying disease data to the public effectively. In conclusion, this research provides a comprehensive approach to enhancing health information dissemination and data visualization at community health centers, contributing significantly to public awareness and preventive healthcare efforts.
Downloads
References
S. Choi and T. Powers, “Engaging and informing patients: Health information technology use in community health centers,” Int. J. Med. Inform., vol. 177, no. February, p. 105158, 2023, doi: 10.1016/j.ijmedinf.2023.105158.
M. Fathoni et al., “The preparedness of disaster among nurses in community health centers in rural areas during the COVID-19 pandemic in Malang City,” Enferm. Clin., vol. 32, pp. S54–S57, 2022, doi: 10.1016/j.enfcli.2022.03.018.
K. D. Prasetya, Suharjito, and D. Pratama, “Effectiveness Analysis of Distributed Scrum Model Compared to Waterfall approach in Third-Party Application Development,” Procedia Comput. Sci., vol. 179, no. 2019, pp. 103–111, 2021, doi: 10.1016/j.procs.2020.12.014.
T. Thesing, C. Feldmann, and M. Burchardt, “Agile versus Waterfall Project Management: Decision model for selecting the appropriate approach to a project,” Procedia Comput. Sci., vol. 181, pp. 746–756, 2021, doi: 10.1016/j.procs.2021.01.227.
A. A. S. Gunawan, B. Clemons, I. F. Halim, K. Anderson, and M. P. Adianti, “Development of e-butler: Introduction of robot system in hospitality with mobile application,” Procedia Comput. Sci., vol. 216, no. 2019, pp. 67–76, 2022, doi: 10.1016/j.procs.2022.12.112.
G. Bergström et al., “Evaluating the layout quality of UML class diagrams using machine learning,” J. Syst. Softw., vol. 192, p. 111413, 2022, doi: 10.1016/j.jss.2022.111413.
H. Wu, “QMaxUSE: A new tool for verifying UML class diagrams and OCL invariants,” Sci. Comput. Program., vol. 228, p. 102955, 2023, doi: 10.1016/j.scico.2023.102955.
P. Danenas, T. Skersys, and R. Butleris, “Natural language processing-enhanced extraction of SBVR business vocabularies and business rules from UML use case diagrams,” Data Knowl. Eng., vol. 128, no. February, p. 101822, 2020, doi: 10.1016/j.datak.2020.101822.
Meiliana, I. Septian, R. S. Alianto, Daniel, and F. L. Gaol, “Automated Test Case Generation from UML Activity Diagram and Sequence Diagram using Depth First Search Algorithm,” Procedia Comput. Sci., vol. 116, pp. 629–637, 2017, doi: 10.1016/j.procs.2017.10.029.
Z. Daw and R. Cleaveland, “Comparing model checkers for timed UML activity diagrams,” Sci. Comput. Program., vol. 111, no. P2, pp. 277–299, 2015, doi: 10.1016/j.scico.2015.05.008.
F. Chen, L. Zhang, X. Lian, and N. Niu, “Automatically recognizing the semantic elements from UML class diagram images,” J. Syst. Softw., vol. 193, p. 111431, 2022, doi: 10.1016/j.jss.2022.111431.
D. Felicio, J. Simao, and N. Datia, “Rapitest: Continuous black-box testing of restful web apis,” Procedia Comput. Sci., vol. 219, no. 2022, pp. 537–545, 2023, doi: 10.1016/j.procs.2023.01.322.
H. Bostani and V. Moonsamy, “EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box Android Malware Detection,” Comput. Secur., p. 103676, 2021, doi: 10.1016/j.cose.2023.103676.
F. Pagano, A. Romdhana, D. Caputo, L. Verderame, and A. Merlo, “SEBASTiAn: A static and extensible black-box application security testing tool for iOS and Android applications,” SoftwareX, vol. 23, p. 101448, 2023, doi: 10.1016/j.softx.2023.101448.
C. Cronley et al., “Designing and evaluating a smartphone app to increase underserved communities’ data representation in transportation policy and planning,” Transp. Res. Interdiscip. Perspect., vol. 18, no. January, p. 100763, 2023, doi: 10.1016/j.trip.2023.100763.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nopri Yansah
![Creative Commons License](http://i.creativecommons.org/l/by-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.