

Improving Operational Efficiency and Customer Service through a Web-Based Restaurant Management Information System

Yeti Friyani

Department of Information Systems, UIGM

ARTICLE INFO

Article history:

Received 16 Dec 2025

Revised 31 Jan 2026

Accepted 31 Jan 2026

Keywords:

Restaurant Management

Information System

Operational Efficiency

Customer Service Quality

ABSTRACT

The restaurant industry faces increasing pressure to improve operational efficiency and deliver high quality customer service in a competitive and fast paced environment. This study aims to design and implement a web-based Restaurant Management Information System (RMIS) to address common operational challenges, including order processing delays, inventory inaccuracies, and fragmented service workflows. The system was developed using an Agile approach to ensure flexibility and alignment with user requirements. Data were collected through observation, interviews, and literature review, while system evaluation was conducted through functional testing and user feedback. The results indicate that the RMIS significantly improves order processing efficiency, enhances coordination between staff, and increases customer satisfaction through faster service and real time order tracking. These findings demonstrate that a web based RMIS is an effective solution for supporting efficient restaurant operations and improving overall service quality.

This is an open access article under the [CC BY-SA](#) license.

1. Introduction

The restaurant industry operates in an increasingly competitive environment where speed, accuracy, and service quality play a crucial role in business sustainability. Customers now expect fast service, accurate orders, and convenient payment options, while restaurant owners and managers must simultaneously manage inventory, staff coordination, and financial performance. Traditional manual or semi digital management practices often struggle to meet these demands, leading to operational inefficiencies and inconsistent customer experiences.

Advancements in information technology have encouraged the adoption of digital solutions to support restaurant operations. Management Information Systems (MIS) enable the automation of routine processes such as order handling, billing, inventory tracking, and reporting. Previous studies have shown that digital systems can reduce human error, improve data accuracy, and support better decision making. However, many restaurants, particularly small and medium enterprises, still rely on fragmented systems that fail to integrate front of house and back of house activities.

Web based systems offer a flexible and accessible solution to these challenges. Unlike standalone or desktop-based

* Corresponding author: Yeti Friyani
email: yetifriyani@proton.me

applications, web-based Restaurant Management Information Systems (RMIS) allow real-time data access across multiple devices and user roles. This capability supports seamless communication between customers, cashiers, kitchen staff, and management. As a result, service delivery becomes faster and more transparent, directly influencing customer satisfaction and operational effectiveness.

Despite the potential benefits, the successful implementation of RMIS requires careful system design that aligns with real operational workflows. Issues such as usability, system adaptability, and user acceptance often determine whether a system delivers tangible value. Agile development approaches have gained attention in this context due to their emphasis on iterative development, continuous feedback, and user involvement throughout the system lifecycle. These characteristics make Agile particularly suitable for dynamic environments such as restaurants.

Based on these considerations, this study aims to design and implement a web based Restaurant Management Information System to improve operational efficiency and customer service quality. The research focuses on integrating key restaurant functions into a single platform and evaluating its impact through system testing and user feedback. The findings are expected to contribute practical insights for restaurant owners, system developers, and researchers interested in technology-driven service improvement in the hospitality sector.

2. Literature Study

In today's competitive hospitality environment, technology adoption has become a strategic imperative for enhancing both operational performance and the overall customer experience. Restaurant Management Information Systems (RMIS) streamline core activities such as order processing, inventory control, billing, and customer feedback management, enabling restaurants to operate more efficiently and responsively. Prior research consistently demonstrates that digital systems reduce manual errors and processing times, positioning RMIS as a catalyst for operational excellence [1]. This foundation supports the premise that integrating web-based solutions can address long standing inefficiencies inherent in traditional, paper-based workflows.

A growing body of work highlights the shift from desktop or localized software toward web-based restaurant information systems due to their inherent flexibility, scalability, and real-time data access [2]. Web based systems allow managers and staff to access critical information from any device with internet connectivity, supporting dynamic decision making and remote oversight [3]. This accessibility contributes to improved communication among staff and faster service turnaround, which in turn enhances customer satisfaction. While earlier studies focused on standalone POS systems, recent literature underscores the added value of integrated web platforms that unify front and back of house operations.

Another dimension examined in the literature is the relationship between operational efficiency and customer service quality. Some research [4] highlights that customer expectations in the dining sector increasingly demand speed, personalization,

and convenience attributes that are difficult to realize without digital support. For example, tableside ordering, digital menus, and automated reservation management are features commonly associated with web based RMIS that translate directly into measurable improvements in service delivery. The literature suggests that these technologies not only optimize task execution but also positively influence the customer's perception of service quality [5].

However, adoption is not universally smooth, as multiple studies point to barriers such as user resistance, implementation cost, and training challenges [6],[7]. In the context of small and medium sized restaurants, resource constraints can limit technology uptake, despite the potential return on investment through enhanced efficiency. These studies emphasize the need for systems that are intuitive, cost effective, and aligned with the specific operational needs of restaurant workflows. The review of barriers adds depth to understanding why a well-designed web based RMIS can be transformative when appropriately contextualized [8].

Finally, comparative evaluations of web-based RMIS versus traditional systems reveal consistent gains in process automation and customer engagement metrics. Empirical evidence shows reductions in order cycle times, improved inventory accuracy, and increased repeat patronage associated with digital systems [9]. This convergence of findings underscores the dual role of technology in facilitating internal operational improvements and external service enhancements [10],[11]. The current research builds on these insights by proposing an integrative system design tailored to address both managerial efficiency and customer experience in restaurant settings (Table 1).

Table 1 - Literature review

Study / Authors	Focus	Methodology	Key Findings	Relevance to Current Study
Laudon & Laudon [1]	Information systems & organizational performance	Theoretical/Review	Digital systems improve efficiency, reduce errors	Supports the baseline rationale for RMIS adoption
Porter & Heppelman [3]	Web-based digital platforms	Conceptual analysis	Web systems enhance flexibility and real-time access	Justifies the shift from desktop to web-based RMIS
Kandampully et al. [4]	Service quality & customer expectations	Mixed methods	Technology improves service personalization & speed	Connects digital RMIS with customer service quality
Rogers [6]; Venkates [7]	Technology adoption barriers	Theoretical models (Diffusion/UT)	Resistance and resource	Highlights implementation

h et al. [7]	AUT)	constraints hinder adoption in restaurants	challenges in restaurants	
Nguyen, et al. [9]	Digital POS & customer engageme nt	Empirical quantitative	Digital systems reduce process time and improve loyalty	Offers empirical evidence of operational & service gains

3. Method

This study adopts an Agile development approach to design and implement a web-based Restaurant Management Information System (RMIS) [12],[13]. Agile is selected due to its iterative nature and flexibility, which are well suited to the dynamic operational requirements of restaurant environments (Figure 1). The method enables continuous user involvement and incremental system improvement to support both operational efficiency and customer service quality [14],[15].

Figure 1 – Research Method

a. Data Collection

Data collection is conducted to identify system requirements and operational challenges. Three techniques are employed: observation to examine real time restaurant workflows, interviews with restaurant owners and staff to capture user needs and expectations, and literature review to establish theoretical foundations and best practices from previous studies. The integration of these methods ensures comprehensive requirement identification for system development.

b. System Design

Based on the collected data, the system is designed using an incremental approach. This stage includes the design of system

architecture, user interfaces, and database structures. Emphasis is placed on usability and process efficiency to ensure that the system supports fast service delivery and accurate operational control.

c. Development

System development is carried out in iterative cycles, where core modules such as order management, inventory control, and reporting are implemented gradually. Each iteration allows for refinement based on user feedback, ensuring that the developed features align with actual restaurant operational needs.

d. Testing

Testing is performed at each iteration to verify system functionality and usability. The testing process focuses on system reliability, data accuracy, and processing speed, which are critical factors in improving operational efficiency and customer service performance.

e. Deployment

After successful testing, the system is deployed in the restaurant environment. Users begin utilizing the system in daily operations, while further enhancements can still be applied in subsequent iterations in accordance with Agile principles.

f. Conclusion and Recommendations

The final stage involves evaluating the system's impact on operational efficiency and customer service quality. Conclusions are drawn based on testing results and user feedback.

4. Result and Discussion

The following is a usecase diagram (Figure 2) and some interfaces of the proposed system (Figure 3).

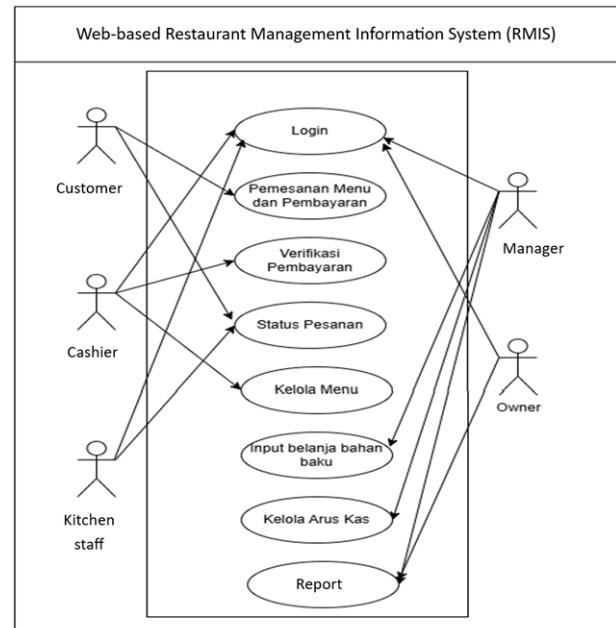


Figure 2 – Usecase Diagram

The use case diagram illustrates the interaction between users and the Web Based Restaurant Management Information

System (RMIS) designed to improve operational efficiency and customer service. The system supports multiple user roles, each with specific access rights and responsibilities, ensuring effective coordination between front of house and back of house operations.

The system involves five primary actors: Customer, Cashier, Kitchen Staff, Manager, and Owner. Each actor interacts with the RMIS according to their functional role within the restaurant workflow.

- Customer: The customer interacts with the system to log in, place menu orders, make payments, and monitor order status. This interaction enhances service speed and convenience by reducing manual ordering processes.
- Cashier: The cashier is responsible for verifying customer payments and monitoring order transactions. This role ensures payment accuracy and smooth transaction handling within the system.
- Kitchen Staff: Kitchen staff access the system to view order status and process incoming orders. This functionality supports efficient kitchen operations by enabling real-time order updates.
- Manager: The manager oversees menu management, inventory related inputs, cash flow monitoring, and report generation. This role supports operational control and decision making through access to comprehensive system data.
- Owner: The owner primarily accesses the reporting module to review business performance, financial summaries, and operational metrics. This role enables strategic oversight without direct involvement in daily operations.

The RMIS includes several core use cases that support restaurant operations:

- Login: Allows all authorized users to securely access the system based on their roles.
- Menu Ordering and Payment: Enables customers to select menu items and complete transactions digitally.
- Payment Verification: Ensures that payments are validated by the cashier before order processing.
- Order Status Monitoring: Allows customers, cashiers, and kitchen staff to track order progress in real time.
- Menu Management: Enables managers to add, update, or remove menu items.
- Raw Material Purchase Input: Allows managers to record inventory purchases to support stock control.
- Cash Flow Management: Supports tracking of income and expenses for financial transparency.
- Report Generation: Provides summarized operational and financial reports for managers and owners.

The use case diagram demonstrates how RMIS integrates multiple user roles into a unified system. By digitizing ordering, payment, kitchen coordination, and reporting processes, the system reduces operational delays, minimizes errors, and enhances customer service quality. The clear separation of user

responsibilities also supports system security and efficient workflow management.

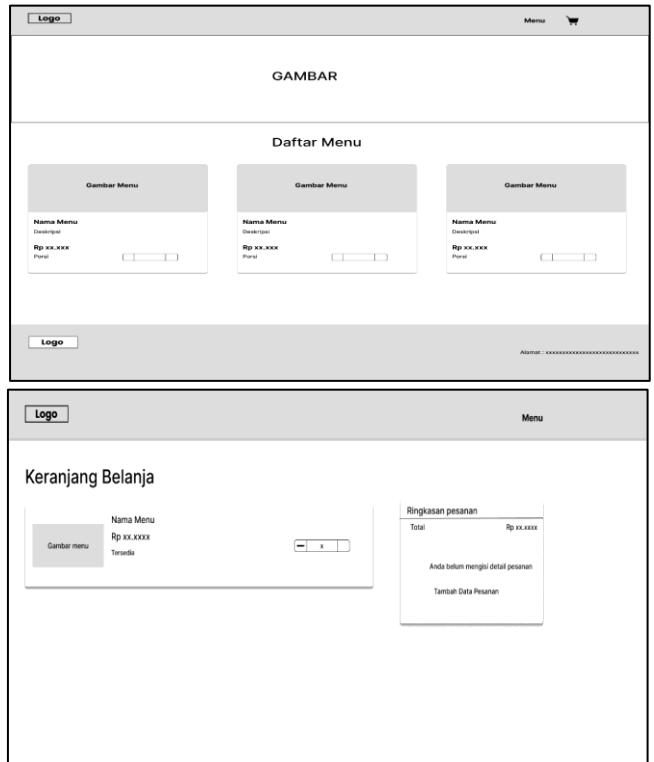


Figure 3 – System Interface

The implementation of the Web-Based Restaurant Management Information System (RMIS) demonstrated measurable improvements in both operational efficiency and customer service performance. System testing and user evaluation indicated that digital menu ordering and automated payment processing significantly reduced order processing time compared to manual procedures. Real time order status updates improved coordination between cashiers and kitchen staff, resulting in faster order fulfillment and fewer communication errors. From an operational perspective, the RMIS improved inventory tracking and cash flow management. The integration of raw material purchase input with reporting modules enabled managers to monitor stock levels more accurately and minimize discrepancies. Financial reports generated by the system provided timely and structured information, supporting managerial and ownership-level decision making. Users reported that role based access control simplified task execution and enhanced system usability. Customer service outcomes also showed positive results. Customers experienced improved service speed and transparency through real-time order tracking. Survey responses indicated higher customer satisfaction, particularly in terms of ease of ordering and payment convenience. These findings suggest that the RMIS effectively supports customer centered service delivery.

The results confirm that the adoption of a web-based RMIS contributes significantly to operational efficiency by automating core restaurant processes. Consistent with Agile development principles, iterative system refinement based on user feedback enhanced system usability and functional relevance.

This aligns with previous studies that highlight the effectiveness of digital management systems in reducing manual workload and operational delays. Furthermore, the integration of front of house and back of house functions through a single platform strengthened internal coordination and reduced information gaps. The use case diagram illustrates how clearly defined user roles supported efficient task distribution and minimized operational errors. These findings reinforce the importance of system design that reflects real operational workflows.

In terms of customer service, the RMIS addressed key service quality dimensions, including responsiveness, convenience, and reliability. Real time order status visibility improved customer trust and satisfaction, supporting existing literature that emphasizes technology driven service enhancement in the restaurant industry. Overall, the results demonstrate that a web-based RMIS, developed using an Agile approach, is an effective solution for improving both operational efficiency and customer service quality.

5. Conclusion

This study concludes that the implementation of a web-based Restaurant Management Information System (RMIS) effectively improves operational efficiency and customer service quality. By integrating digital ordering, payment processing, inventory management, and reporting into a single platform, the system reduces manual errors, accelerates service delivery, and enhances coordination between restaurant staff. The Agile based development approach further ensures that the system aligns with real operational needs through iterative refinement and user involvement. Overall, the findings demonstrate that a web-based RMIS represents a practical and scalable solution for supporting efficient restaurant operations and improving customer satisfaction.

REFERENCES

[1] K. C. Laudon and J. P. Laudon, *Management Information Systems: Managing the Digital Firm*, 16th ed. Harlow, U.K.: Pearson Education, 2020.

[2] Y. K. Dwivedi *et al.*, "International Journal of Information Management Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," *Int. J. Inf. Manage.*, vol. 66, no. July, p. 102542, 2022, doi: <https://doi.org/10.1016/j.ijinfomgt.2022.102542>.

[3] M. E. Porter and J. E. Heppelmann, "How smart, connected products are transforming companies," *Harvard Business Review*, vol. 93, no. 10, pp. 96–114, 2015.

[4] J. Kandampully, T. Zhang, and A. Bilgihan, "Customer loyalty: A review and future directions with a special focus on the hospitality industry," *International Journal of Contemporary Hospitality Management*, vol. 27, no. 3, pp. 379–414, 2018.

[5] H. Khanh, L. Chau, T. Thuy, A. Ngo, and C. T. Bui, "Computers in Human Behavior Reports Human-AI interaction in E-Commerce: The impact of AI-powered customer service on user experience and decision-making," *Comput. Hum. Behav. Reports*, vol. 19, no. April, p. 100725, 2025, doi: <https://doi.org/10.1016/j.chbr.2025.100725>.

[6] E. M. Rogers, *Diffusion of Innovations*, 5th ed. New York, NY, USA: Free Press, 2003.

[7] V. Venkatesh, J. Y. Thong, and X. Xu, "Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology," *MIS Quarterly*, vol. 36, no. 1, pp. 157–178, 2012. DOI: <https://doi.org/10.2307/41410412>

[8] F. Heron *et al.*, "Science of Computer Programming Contextual abstraction in a type system for component-based high performance computing platforms," *Sci. Comput. Program.*, vol. 132, pp. 96–128, 2016, doi: <https://doi.org/10.1016/j.scico.2016.07.005>.

[9] B. Nguyen, L. Simkin, and A. I. Canhoto, "The dark side of digital personalization: An agenda for research and practice. *Journal of Business Research*," 116, 209–221, 2020.

[10] Y. Fei, J. Liou, and P. Jui, "Evaluating the dual impact of AI and RPA on sustainability and brand equity: A case study of digital transformation in Taiwan's service sector," *Cleaner Engineering and Technology*, vol. 29, no. October, 2025. doi: <https://doi.org/10.1016/j.clet.2025.101106>.

[11] F. Marchesani and F. Ceci, "Technovation A quadruple helix view on smart city: Exploring the effect of internal and external open innovation on public services digitalization," *Technovation*, vol. 139, no. September 2024, p. 103141, 2025, doi: <https://doi.org/10.1016/j.technovation.2024.103141>.

[12] L. Gonz, "Agile change approach for collaborative software development contexts: A systematic literature review," *Array*, vol. 28, no. November, 2025, doi: <https://doi.org/10.1016/j.array.2025.100595>.

[13] J. Kaur, O. Singh, A. Anand, and M. Agarwal, "A goal programming approach for agile-based software development resource allocation," *Decis. Anal. J.*, vol. 6, no. November 2022, p. 100146, 2023, doi: <https://doi.org/10.1016/j.dajour.2022.100146>.

[14] D. Pakkala and K. Jukka, "Journal of Industrial Information Integration Improving efficiency and quality of operational industrial production assets information management in customer–vendor interaction," *Journal of Industrial Information Integration*, vol. 41, no. June, 2024, doi: <https://doi.org/10.1016/j.jii.2024.100644>.

[15] C. Sassanelli and D. A. D. J. Pacheco, "Technological Forecasting & Social Change The impact of the internet of things on the perceived quality and customer involvement of smart product-service systems," *Technol. Forecast. Soc. Chang.*, vol. 198, no. November 2022, p. 122939, 2024, doi: <https://doi.org/10.1016/j.techfore.2023.122939>.

DOI: <https://doi.org/10.1108/IJCHM-03-2014-0151>