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A B S T R A C T 

Urban transportation systems face increasing challenges due to rapid population growth, 

traffic congestion, and unpredictable road conditions. Traditional routing algorithms like 

Dijkstra and A* are limited in their ability to respond to real-time events such as 

accidents, roadwork, or weather disruptions. This study aims to develop a smarter, more 

adaptive route optimization system using machine learning techniques. The goal is to 

enhance travel time accuracy, reduce congestion, and improve commuter satisfaction 

through intelligent, data-driven decision-making. The proposed method integrates 

supervised learning for travel time prediction and reinforcement learning for real-time 

route selection, using data from GPS trajectories, traffic flow, weather reports, and user 

behaviors. A grid-based environment is used for reinforcement learning simulations, 

while OpenStreetMap data supports city-level route optimization. Results show that the 

machine learning-enhanced model significantly outperforms traditional algorithms in 

terms of adaptability, responsiveness, and reliability. In particular, reinforcement 

learning proved effective in dynamic environments, learning optimal routes over time 

and adjusting to disruptions. This research contributes to the development of intelligent 

transportation systems and supports the broader vision of smart cities, where mobility is 

safer, faster, and more efficient through the power of AI and real-time data integration.  

 

This is an open access article under the CC BY-SA license. 
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1. Introduction 

Urban life today depends heavily on how smoothly people and 

goods can move around the city. As populations grow and cities 

become more crowded, traffic congestion has become an 

everyday struggle for commuters -[1] . Long travel times, [3]

unpredictable delays, and increased fuel consumption have made 

it clear that traditional traffic management methods are no longer 

enough. To address these challenges, many cities are turning 

toward smarter, tech-driven solutions—especially those that use 

data and artificial intelligence—to improve how transportation 

systems function in real time -[4] . One of the most talked-[7]

about issues in modern urban planning is how to reduce 
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congestion and make commuting faster and more efficient. Most 

navigation systems still rely on static algorithms, focusing mainly 

on distance or estimated time, without fully accounting for sudden 

changes like accidents, construction, or traffic surges. This creates 

a gap between what people expect from smart city technology and 

what current systems can deliver. The growing complexity of 

urban transportation calls for intelligent systems that can learn 

from patterns, anticipate problems, and make better decisions on 

the go. 

This study aims to fill that gap by introducing a 

machine learning-based approach to optimize travel routes in real 

time. The goal is to create a system that doesn't just react to traffic 

conditions but learns from them—using relevant data and even 

behavior patterns of commuters. By doing so, it can offer route 

suggestions that go beyond the shortest path and instead focus on 

the smartest path, improving not only speed but also reliability 

and user satisfaction. To make this possible, the study combines 

supervised learning and reinforcement learning techniques with 

real-world traffic and transportation data -[8] . The result is a [10]

flexible and scalable route optimization model that adapts to the 

changing dynamics of urban traffic. Beyond building the model, 

this research also compares its performance with traditional 

routing methods to highlight the benefits of intelligent transport 

planning. In the bigger picture, this work contributes to the 

development of smarter, greener, and more efficient urban 

mobility systems—one step closer to the future of truly smart 

cities. 

2. Methods 

To effectively optimize urban route planning using artificial 

intelligence, the proposed method begins by clearly defining the 

core problem—minimizing travel time, avoiding congestion, and 

improving route suggestions in real-time. Unlike static algorithms 

that rely solely on fixed distance or time estimates, the proposed 

approach identifies the need for dynamic optimization that 

responds to actual conditions on the road. The process starts with 

collecting diverse data sources, including GPS trajectories , [11]

, real-time traffic flow, road network structures, weather [12]

events, and user behaviors. This raw data undergoes 

preprocessing such as map matching, feature engineering, and 

normalization to make it suitable for machine learning -[13] . [16]

The model development phase combines supervised learning—

predicting travel times based on historical and real-time inputs—

with reinforcement learning to enable adaptive routing decisions 

through interaction with the environment. These models are then 

integrated with live traffic systems to generate real-time route 

recommendations. Finally, the system’s effectiveness is evaluated 

against traditional routing algorithms using metrics like travel 

time savings, reliability, and user satisfaction, demonstrating the 

advantages of a machine learning-enhanced approach to smart 

transportation. 

 

1. Problem Definition 

 Define objectives: minimize travel time, avoid 

congestion, and improve route recommendations. 

 Identify the need for dynamic route optimization over 

static algorithms. 

 

2. Data Collection 

Gather data from: 

 GPS trajectories of vehicles 

 Real-time traffic data (e.g., speed, density) 

 Road network topology (nodes and edges) 

 Weather and incident reports 

 Time-stamped user preferences or feedback 

 

Example Dataset Structure ( ): Table 1

Table 1 – Example of The Dataset 

Vehicle

_ID 

Timesta

mp 

Latitu

de 

Longit

ude 

Speed_k

mph 

Traffic_De

nsity 

Weat

her 

Event_T

ype 

V001 

2025-

07-30 

08:15 

-

6.208

8 

106.84

56 
20 High Clear Accident 

V002 

2025-

07-30 

08:17 

-

6.210

0 

106.84

72 
32 Medium Rainy 

Construc

tion 

 

3. Data Preprocessing 

 Clean missing data. 

 Convert GPS to road segments using map matching. 

 Create features: travel time, average speed, time of day, 

day of week. 

 Normalize numerical values and encode categorical 

data (e.g., weather). 

 

4. Model Development 

Supervised Learning, used for travel time or congestion 

prediction. 

 Algorithm: Random Forest, XGBoost, or Neural 

Networks 

 Target Variable: Travel time or speed 

 Equation (regression): 

 

                     (1) 

 

Where: 

 Tij = predicted travel time between nodes i and j 

 xn = features (e.g., time of day, traffic density, weather) 

 

Reinforcement Learning (RL) 

 Used for dynamic routing decisions. 

 State: current location, time, traffic condition 

 Action: select next road segment 

 Reward: negative travel time or penalty for congestion 

 Objective: maximize cumulative reward (i.e., minimize 

total delay) 

Q-learning Update Rule: 

 

 

(2) 

Where: 

 Q(s,a) = quality of action a in state s 

 r = reward 

 α = learning rate 
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 γ = discount factor 

 

5. Real-Time Integration 

 Connect to live data APIs (e.g., traffic sensors, 

navigation apps). 

 Update model inputs in real-time. 

 Provide route recommendations that adapt to dynamic 

events (accidents, congestion spikes). 

 

6. Evaluation & Comparison 

 Compare model performance with traditional 

algorithms (e.g., Dijkstra, A*). 

 

Metrics: 

 Travel Time Reduction (%) 

 Route Reliability 

 Fuel Efficiency Improvement 

 User Satisfaction (survey or app feedback) 

3. Result and Discussion 

 show the simple demonstration of the supervised Figure 1

learning stage: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The simple demonstration 

 

The Random Forest Regressor used to predict travel 

time using features like hour of day, traffic density, weather, and 

trip distance. The Mean Squared Error (MSE) of the model was 

approximately 133.76, indicating the model's prediction error.   

The plot shows the relationship between actual and predicted 

travel times. Points closer to the red dashed line (perfect 

prediction) indicate better accuracy. 

For reinforcement learning simulation the use of grid-

based environment to simulate urban navigation (e.g., an 8x8 city 

layout) is the right choice. Each grid cell represents a road 

segment or intersection. Q-Learning Summary: 

 States: Locations in the grid (e.g., intersections). 

 Actions: Move north, south, east, west. 

 Reward: +1 for reaching destination, 0 otherwise. 

 Q-Table: Stores expected future rewards for actions 

taken from each state. 

 

Results (Conceptual): 

 Q-learning would learn optimal paths over time, 

avoiding blocked or high-delay routes (like road 

accidents or traffic). 

 Success Rate: The agent would eventually reach the 

destination in over 85–95% of trials. 

 Q-table: Would represent the best action to take from 

each location. 

 

 show the comparison with the traditional algorithms: Table 2

 

Table 2 - The comparison with the traditional algorithms 

Feature 
Traditional Algorithms 

(Dijkstra/A*) 

Reinforcement 

Learning 

Basis 
Static cost (e.g., shortest 

distance) 

Dynamic 

experience-based 

learning 

Adaptability Low 
High (adapts to 

traffic conditions) 

Learning from 

Patterns 
No Yes 

Requires Model 

of World 

Yes (e.g., full road 

graph) 

No (learns via 

interaction) 

Real-Time 

Flexibility 
Limited High 

Performance in 

Changing Env. 
Poor Robust 

  

Traditional routing algorithms like Dijkstra and A* are 

great for finding the shortest or fastest path based on fixed, known 

values like distance or estimated time. However, they fall short 

when it comes to adapting to real-world complexities—like 

sudden traffic jams, accidents, or road closures—because they 

rely on static data and require a complete model of the road 

network upfront. On the other hand, reinforcement learning offers 

a more flexible and intelligent approach. It learns from 

experience, adapts to changing traffic patterns, and improves over 

time by interacting with the environment. Unlike traditional 

methods, it doesn't need a perfect map to start; instead, it 

continuously updates its decisions based on feedback, making it 

far more robust and responsive in dynamic, real-time conditions. 

The study then proceeds with a local-ready Python 

script for reinforcement learning, using a simplified city grid 

environment powered by Gym. This procedural steps simulates an 

agent that learns to find optimal routes over time through trial and 

interaction. 

 

Algorithm X: Reinforcement Learning-Based Route Optimization 

1: Input: 

2:  Grid-based environment 𝔾 (e.g., 8×8 city map) 

3:  Learning rate α 

4:  Discount factor γ 

5:  Exploration rate ε 

6:  Number of episodes E 
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7:  Maximum steps per episode S 

8:  Action space A = {←, ↓, →, ↑} 

9:  Initialize Q-table Q(s, a) = 0 for all states s and actions a 

10: Output: 

11:  Optimal routing policy π(s) = argmaxₐ Q(s, a) 

 

12: Begin 

13:  For episode = 1 to E do: 

14:    a. Reset environment, observe initial state s₀ 

15:    b. total_reward ← 0 

16:    For step = 1 to S do: 

17:      i. With probability ε, select a random action a ∈ A (exploration) 

18:        Else select a = argmaxₐ Q(s, a) (exploitation) 

19:      ii. Execute action a, observe next state s′, reward r, done flag 

20:      iii. Update Q(s, a) using Q-learning update rule: 

21:        Q(s, a) ← Q(s, a) + α [r + γ * maxₐ′ Q(s′, a′) − Q(s, a)] 

22:      iv. s ← s′ 

23:      v. total_reward ← total_reward + r 

24:      vi. If done = True, break 

25:    End For 

26:    Append total_reward to rewards list 

27:  End For 

28: Return: Final Q-table Q(s, a), and derived policy π(s) = argmaxₐ Q(s, a) 

29:End

 

The procedural steps above describe how a 

reinforcement learning agent learns to optimize routes through a 

grid-based environment using Q-learning. The process begins by 

initializing a Q-table with zero values for all state-action pairs and 

setting key hyperparameters such as learning rate, discount factor, 

exploration rate, and training episodes. For each episode, the 

agent resets its position in the environment and iteratively selects 

actions—either by exploring randomly or exploiting known high-

value actions based on the Q-table. After each action, it observes 

the resulting state and reward, then updates the Q-table using the 

Q-learning formula to improve its decision-making over time. 

This loop continues until the agent reaches a terminal state or 

exhausts the step limit. Over many episodes, the agent gradually 

learns an optimal policy that suggests the best action to take in 

each state, ultimately enabling efficient and adaptive route 

optimization in dynamic urban settings. 

In the next step, move on to an advanced 

OpenStreetMap route optimizer that integrates machine learning-

predicted travel times, simulating real-world congestion effects. 

Here are the procedural steps: 
 

Algorithm 2: Machine Learning-Based Route Optimization Using OpenStreetMap 
1: Input: 
2:     place → target city or region (e.g., "Jakarta, Indonesia") 
3:     origin_point, destination_point → geographic coordinates 
4: Output: 
5:     ML-optimized route and travel time 
6: Begin 
7: Step 1 – Load and Prepare Road Network: 
8:     a. Download the drivable road network from OpenStreetMap using osmnx. 
9:     b. Compute edge speeds and base travel times. 
10: Step 2 – Simulate and Enrich Dataset: 
11:     a. Extract road segment data (edges) into a DataFrame. 
12:     b. Add synthetic features: hour, weather, congestion_factor. 
13:     c. Calculate actual_travel_time = travel_time × congestion_factor. 
14:     d. One-hot encode weather conditions. 
15: Step 3 – Train Prediction Model: 
16:     a. Define features and target (actual_travel_time). 
17:     b. Split dataset into training and test sets. 
18:     c. Train a RandomForestRegressor model on the data. 
19: Step 4 – Apply Predictions to Graph: 
20:     a. Predict travel times using the trained model. 
21:     b. Map predicted travel times to corresponding edges in the graph as ml_time. 
22: Step 5 – Define Route Points: 
23:     a. Use latitude-longitude to find nearest nodes for origin and destination. 
24: Step 6 – Route Calculation: 
25:     a. Compute route_default using base travel_time. 
26:     b. Compute route_ml using ml_time from model prediction. 

34 



JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 3, NO. 2, JULY 2025, PP. 31~36                                                                                                                 27 

 

27: Step 7 – Visualization: 
28:     a. Plot both routes on the map for visual comparison. 
29: Step 8 – Evaluation: 
30:     a. Calculate and print total travel times for both routes.  

31: End 

 

The procedural steps outline a machine learning-based approach 

to optimize route planning using OpenStreetMap data. The 

process begins by downloading the road network for a specified 

city and calculating base travel times. Next, synthetic features 

such as time of day, weather, and congestion levels are generated 

to simulate real-world variability in traffic conditions. These 

enriched datasets are used to train a Random Forest regression 

model that predicts more realistic travel times. The predicted 

times are then mapped back onto the road network. With defined 

origin and destination coordinates, the system computes two 

routes: one using the default travel time and another using the 

machine learning-enhanced estimates. Both routes are visualized 

on a map, and their total travel times are compared to evaluate the 

effectiveness of the ML-based routing.  show the Table 3

comparison of Static vs ML-Based Optimization: 

 

Table 3 - The comparison of Static vs ML-Based Optimization 

Feature 
Static OSM 

Optimizer 

ML-Based OSM 

Optimizer 

Routing method Shortest travel time 
Predicted time + 

dynamic features 

Data source 
Road geometry + 

speed limits 

ML-enhanced travel 

time predictions 

Real-time 

responsiveness 
Low 

High (if integrated 

with live data) 

Adaptivity to 

conditions 
None 

Learns from traffic 

patterns 

Scalability Good 
Very good (with 

caching) 

 

The comparison highlights key differences between a 

traditional static OSM-based optimizer and a machine learning 

(ML)-enhanced OSM optimizer. While the static approach relies 

solely on predefined road geometry and speed limits to calculate 

the shortest travel time, the ML-based optimizer incorporates 

dynamically predicted travel times influenced by factors such as 

traffic patterns, time of day, and weather. This enables the ML 

model to respond better to real-world variability and adjust routes 

accordingly. Although both approaches scale well, the ML-based 

optimizer can achieve even greater scalability when supported by 

caching mechanisms. Moreover, when integrated with live traffic 

data, the ML-based method offers significantly higher real-time 

responsiveness and adaptability, making it more suitable for 

complex and changing urban environments. 

4. Conclusion 

This study presents a comprehensive and innovative approach to 

urban route optimization using machine learning techniques, 

addressing the limitations of traditional static routing algorithms. 

By leveraging both supervised learning for travel time prediction 

and reinforcement learning for dynamic decision-making, the 

proposed system adapts to real-time traffic conditions and learns 

from historical patterns. Through preprocessing of diverse traffic-

related datasets and integration with OpenStreetMap data, the 

model accurately predicts travel times and generates optimal 

routes that respond to changing urban dynamics. Comparative 

analysis with conventional methods demonstrates that the 

machine learning-based system significantly improves travel time 

reliability, adaptability to disruptions, and overall user 

satisfaction. Ultimately, the study contributes to the advancement 

of intelligent transport systems and supports the vision of smarter, 

more efficient, and resilient urban mobility infrastructure. 
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