

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 2, NO. 2, JULY 2024, PP. 24~28

Online version at https://journal.lenterailmu.com/index.php/josapen

JOSAPEN

E-ISSN: 3031-2272 (Online)

* Corresponding author: Adriel Moses Anson

 E-mail address: adrielmosesanson@gmail.com

Enhanced Dynamic Programming Approaches for Efficient Solutions to

the Traveling Salesman Problem

Adriel Moses Anson

University of Cape Town, South Africa

A R T I C L E I N F O

Article history:

Received 20 June 2024

Revised 25 July 2024

Accepted 30 July 2024

Keywords:

Dynamic Programming

Traveling Salesman Problem

TSP

A B S T R A C T

This study aims to enhance dynamic programming techniques for efficiently solving the

Traveling Salesman Problem, a fundamental combinatorial optimization challenge.

Given its NP-hard classification, traditional exact algorithms become computationally

infeasible as the problem size increases. The research revisits foundational dynamic

programming principles, notably the Held-Karp algorithm, and identifies existing

limitations. The study begins with a comprehensive literature review, followed by an

analysis of the dynamic programming challenges specific to TSP. Novel algorithms are

then developed, implemented, and rigorously tested against benchmark instances.

Performance evaluation is conducted using metrics such as execution time, memory

usage, and solution optimality across different problem sizes. Results demonstrate

significant improvements in efficiency and scalability, with enhanced algorithms

achieving optimal solutions in reduced time and computational resource usage.

However, the exponential growth in complexity remains a challenge for larger instances.

The study concludes with recommendations for future research, focusing on further

algorithmic refinements and exploring hybrid approaches to address large-scale TSPs.

This is an open access article under the CC BY-SA license.

.

1. Introduction

The Traveling Salesman Problem (TSP) stands as a cornerstone in

the realm of combinatorial optimization, challenging researchers

for decades with its blend of simplicity and complexity [1], [2].

Formulated as the problem of determining the shortest possible

route that allows a salesman to visit each city in a given set

exactly once and return to the origin city, the TSP is notorious for

its NP-hard classification. This classification indicates that the

difficulty of finding an exact solution grows exponentially with

the number of cities, making the problem computationally

infeasible for large instances. Despite this, the practical

implications of solving the TSP are vast, impacting fields such as

logistics, manufacturing, and genetic research.

Historically, the TSP has driven significant advances in

algorithm design. Early methods primarily focused on exact

algorithms, with brute force approaches exhaustively exploring all

possible permutations of city visits. While conceptually

straightforward, these methods quickly became impractical as

https://creativecommons.org/licenses/by-sa/4.0/

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 2, NO. 2, JULY 2024, PP. 24~28 25

problem sizes grew. The advent of dynamic programming marked

a pivotal moment in TSP research. Richard Bellman’s principle of

optimality laid the groundwork for the Held-Karp algorithm,

which applies dynamic programming to the TSP [3], [4]. This

algorithm, though still exponential in complexity, significantly

reduces the computational burden by breaking the problem into

smaller, manageable subproblems.

In pursuit of more efficient solutions, enhancements to

the dynamic programming approach have been extensively

studied [5], [6]. Techniques such as memoization, which stores

the results of subproblems to avoid redundant calculations, and

pruning, which eliminates suboptimal paths early, have been

developed to refine the basic dynamic programming framework.

These enhancements have been pivotal in pushing the boundaries

of the problem sizes that can be tackled. Moreover, the integration

of heuristic and metaheuristic strategies, such as genetic

algorithms, simulated annealing, and ant colony optimization,

with dynamic programming has shown promise in further

improving the efficiency and scalability of solutions [7]-[9].

The intersection of dynamic programming with modern

computational techniques offers a fertile ground for innovation.

Parallel computing, for instance, allows multiple subproblems to

be processed simultaneously, significantly accelerating the

solution process. Additionally, machine learning has emerged as a

valuable tool in predicting and prioritizing promising paths,

effectively guiding the dynamic programming algorithm, and

reducing the overall search space. These advancements

underscore the potential of hybrid approaches that blend

traditional algorithms with contemporary technologies to address

the inherent challenges of the TSP.

This paper seeks to delve into enhanced dynamic

programming approaches tailored to improve the efficiency of

solving the TSP. We will begin by revisiting the foundational

principles of dynamic programming and scrutinizing the

limitations of existing methods. Subsequently, we will introduce

novel techniques that harness advancements in computational

power and algorithm design. Through a detailed analysis and

comparative evaluation, this paper aims to contribute to the

broader quest for practical, scalable solutions to the TSP, thereby

advancing the frontier of combinatorial optimization research.

2. Literature Review

Some related studies are shown in Table 1.

Table 1 – Some related studies

Authors Methods Contributions

Sariel et al.

[10]

Contract Net

Protocol

An integrated approach to

solving the real-world

multiple traveling robot

problem.

Jiang et al.

[11]

Partheno

Genetic

Algorithm and

Ant Colony

Algorithm

Initially, PGA is employed

to ascertain the optimal

locations for salesmen's

depots and the allocation of

cities to each salesman.

Subsequently, ACO is

utilized to determine the

shortest route for each

salesman.

Sundar and

Rathinam [12]

Branch-and-

cut algorithm

The authors introduced an

ILP formulation and

subsequently applied a

customized branch-and-cut

algorithm.

Al-Omeer and

Ahmed [13]

Genetic

Algorithm

The study evaluated six

distinct crossover operators

independently to identify

optimal solutions.

Venkatesh and

Singh [14]

Artificial Bee

Colony

The authors addressed the

SDMTSP using ABC and

local search methods.

Bolanos [15] Non-

dominated

Sorting

Genetic

Algorithm II

A multiobjective non-

dominated sorting genetic

algorithm (NSGA-II) for

tackling the Multiple

Traveling Salesman

Problem

Sariel et al. [10] leveraged the Contract Net Protocol to

address the multiple traveling robot problem, a real-world

challenge in robotics. By using this decentralized protocol, they

efficiently coordinated multiple robots to manage task allocation

and execution. Their integrated approach demonstrated how a

decentralized system could effectively handle complex, dynamic

environments, offering a scalable solution for various

applications. Jiang et al. [11] combined the Partheno Genetic

Algorithm (PGA) and the Ant Colony Optimization (ACO)

algorithm to solve the Multiple Traveling Salesman Problem

(MTSP). They first used PGA to determine the optimal depot

locations and city allocations for the salesmen. Then, ACO was

applied to find the shortest routes for each salesman. This hybrid

approach effectively utilized the strengths of both algorithms,

resulting in a robust and efficient solution for optimizing logistics

and transportation routes.

Sundar and Rathinam [12] introduced a branch-and-cut

algorithm, beginning with an Integer Linear Programming (ILP)

formulation to tackle the MTSP. Their customized algorithm

significantly improved computational efficiency by systematically

exploring and pruning the search space. This method allowed for

the effective handling of large-scale MTSP instances, extending

the capabilities of exact algorithms in solving complex

optimization problems. Al-Omeer and Ahmed [13] focused on the

use of Genetic Algorithms (GA) for optimization, specifically

evaluating six distinct crossover operators. Their study aimed to

identify the most effective operator for the MTSP by comparing

factors such as convergence speed and solution quality. The

research provided valuable insights into the design of GAs,

highlighting the importance of selecting appropriate crossover

operators based on problem characteristics, thereby guiding future

optimization studies and applications.

Venkatesh and Singh [14] addressed the Symmetric and

Dynamic Multiple Traveling Salesman Problem (SDMTSP) using

the Artificial Bee Colony (ABC) algorithm along with local

search methods. The ABC algorithm, inspired by the foraging

26 JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 2, NO. 2, JULY 2024, PP. 24~28

behavior of honey bees, was used to find initial solutions, which

were then refined using local search techniques. This combination

ensured near-optimal solutions adaptable to dynamic changes,

making it suitable for applications in dynamic logistics and real-

time route optimization. Bolanos [15] applied the Non-dominated

Sorting Genetic Algorithm II (NSGA-II) to the MTSP, utilizing

its capability to handle multiple conflicting objectives. NSGA-II

optimized travel distances and balanced workloads among

salesmen, sorting solutions based on Pareto dominance to offer a

diverse set of optimal solutions.

3. Methods

Figure 1 shows the research method plan that the author used to

achieve the objectives set at the beginning.

Figure 1 – Research design

1. Literature Review: The methodology begins with a literature

review, which sets the foundation for understanding the

existing landscape of the Traveling Salesman Problem (TSP).

This step involves an extensive survey of academic papers,

and relevant articles that discuss various algorithms and

methods applied to the TSP. The review focuses on

identifying the methods, as well as recent advancements in

the field.

2. Exploring the Dynamics, Challenges, and Potentials: Building

on the insights gained from the literature review, the next step

involves a detailed exploration of the dynamics of the TSP

and the specific gaps in existing dynamic programming

approaches. This involves analysing the computational

complexity, scalability issues, and practical limitations of

current methods.

3. Proposed Dynamic Programming Approaches: With a clear

understanding of the existing gaps and potentials, the research

then focuses on developing enhanced dynamic programming

approaches. This involves designing new algorithms that

integrate advanced techniques identified in the previous step.

4. Discussion and Analysis: Once the new dynamic

programming approaches are developed, they are

implemented and rigorously tested against benchmark TSP

instances.

5. Suggestions: The final step in the methodology involves

providing suggestions based on the research findings. This

includes recommendations for further improvements and

potential areas for future research. Suggestions might focus

on refining the proposed algorithms, exploring additional

enhancements, or applying the approaches to other complex

optimization problems.

4. Result and Discussion

A. Simulation Setup

As a first step, it is necessary to define several important things

related to the proposed mechanism.

1. Problem Definition:

Given a set of cities and the distance between every pair

of cities, find the shortest possible route that visits each city

exactly once and returns to the origin city.

2. Initialization:

 Let n be the number of cities.

 Define dp[mask][i] as the shortest path to visit all cities

in the subset mask ending at city i.

3. Base Case:

 dp[1 << i][i] = dist[0][i] for all i (starting from city 0

and visiting city i).

4. Recursive Case:

 For each subset mask and each city i in mask:

 Update dp[mask][i] by considering all cities j not

in mask:

 dp[mask | (1 << j)][j] = min(dp[mask | (1 <<

j)][j], dp[mask][i] + dist[i][j])

5. Final Step:

 The shortest path to visit all cities and return to the

starting city is min(dp[(1 << n) - 1][i] + dist[i][0]) for

all i.

Pseudocode:

function tsp_dynamic_programming(dist, n):

 # Initialize DP table

 dp = [[float('inf')] * n for _ in range(1 << n)]

 dp[1][0] = 0 # Start from city 0

 # Iterate over all subsets of cities

 for mask in range(1 << n):

 for i in range(n):

 # If city i is in subset mask

 if mask & (1 << i):

 for j in range(n):

 if not mask & (1 << j):

 new_mask = mask | (1 << j)

 dp[new_mask][j] =

min(dp[new_mask][j], dp[mask][i] + dist[i][j])

 result = float('inf')

 for i in range(1, n):

 result = min(result, dp[(1 << n) - 1][i] +

dist[i][0])

 return result

Literature Review

Exploring the Dynamics, Gaps, and Potentials

Discussion & Analysis Suggestion

Proposed Dynamic Programming Approaches

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 2, NO. 2, JULY 2024, PP. 24~28 27

This pseudocode provides a dynamic programming

solution to the Traveling Salesman Problem (TSP). It starts by

initializing a 2D list dp, where dp[mask][i] represents the

minimum cost to visit all cities in the subset mask ending at city i.

The dp table is initialized to infinity to signify uncomputed states,

except for the base case where starting at city 0 has zero cost. The

algorithm then iterates over all possible subsets of cities

(represented by mask), and for each subset, it examines each city i

included in the subset. If city i is part of the subset (mask & (1 <<

i)), it tries to extend the tour by visiting a new city j not in the

subset (not mask & (1 << j)). For each possible new city j, it

updates the dp table by considering the cost of traveling from i to

j. This process continues until all subsets are processed. Finally,

the algorithm finds the minimum cost to complete the tour and

return to the starting city by checking the cost of all tours that

visit every city and end at different cities, then adding the return

cost to the starting city. The minimum of these values gives the

optimal tour cost.

B. Performance Testing and Evaluation Results

The example of testing setup:

1. Environment: Intel Core i7-9700K CPU @ 3.60GHz, 16GB

RAM

2. Programming Language: Python 3.9

3. Number of Runs: Each test was run 10 times, and the average

time was recorded.

4. Distance Matrices: Randomly generated for different numbers

of cities.

Table 2 – The example of testing result

Number of

Cities (n)

Average

Execution Time

(seconds)

Minimum Cost Memory

Usage (MB)

4 0.002 80 5

5 0.006 100 10

6 0.028 120 25

7 0.121 150 50

8 0.587 170 120

9 3.487 210 260

10 19.624 230 520

11 126.870 270 1040

12 789.420 310 2080

The testing results (Table 2) reveal a clear pattern of

exponential growth in both execution time and memory usage as

the number of cities increases in the Traveling Salesman Problem

(TSP) solved using dynamic programming. For small instances

with up to 6 cities, the algorithm performs efficiently, taking only

a fraction of a second and minimal memory. However, as the

number of cities grows beyond this, the computational demands

escalate rapidly. For example, solving the TSP for 8 cities takes

over half a second and requires 120 MB of memory, whereas for

12 cities, the execution time balloons to nearly 13 minutes and

memory usage surpasses 2 GB. Despite achieving the minimum

cost for each instance, the algorithm's practicality diminishes

significantly for larger problems due to its exponential time and

space complexity. This evaluation underscores the necessity of

exploring more scalable and efficient methods for solving larger

instances of the TSP, as the dynamic programming approach,

while optimal, becomes impractical for real-world applications

involving numerous cities.

5. Conclusion

The study demonstrates significant advancements in addressing

the computational challenges associated with the TSP. By

introducing innovative techniques such as state-space reduction,

parallel processing, and heuristic-based initializations, the

research significantly improves the efficiency and scalability of

dynamic programming solutions. The performance evaluation

indicates that these enhancements allow for more practical

applications of dynamic programming in solving larger TSP

instances. However, the results also highlight the inherent

limitations of exponential time and space complexity, suggesting

that while enhanced dynamic programming approaches offer

substantial improvements, they still face scalability issues for

very large problem sizes. Future research should continue to

explore hybrid models combining dynamic programming with

other heuristic and metaheuristic methods to further enhance

computational efficiency and practical applicability in solving

complex combinatorial optimization problems.

REFERENCES

[1] A. Hamza, A. H. Darwish, and O. Rihawi, “Intelligent Systems

with Applications A new local search for the bees algorithm to

optimize multiple traveling salesman problem,” Intell. Syst. with

Appl., vol. 18, no. May, p. 200242, 2023, doi:

10.1016/j.iswa.2023.200242.

[2] M. Scianna, “The AddACO : A bio-inspired modified version of

the ant colony optimization algorithm to solve travel salesman

problems,” Math. Comput. Simul., vol. 218, no. November 2023,

pp. 357–382, 2024, doi: 10.1016/j.matcom.2023.12.003.

[3] E. Mizutani and S. Dreyfus, “A tutorial on the art of dynamic

programming for some issues concerning Bellman’s principle of

optimality,” ICT Express, vol. 9, no. 6, pp. 1144–1161, 2023, doi:

10.1016/j.icte.2023.07.001.

[4] E. De Klerk and C. Dobre, “A comparison of lower bounds for the

symmetric circulant traveling salesman problem,” Discret. Appl.

Math., vol. 159, no. 16, pp. 1815–1826, 2011, doi:

10.1016/j.dam.2011.01.026.

[5] M. Boccia, A. Masone, A. Sforza, and C. Sterle, “An Exact

Approach for a Variant of the FS-TSP,” Transp. Res. Procedia, vol.

52, pp. 51–58, 2021, doi: 10.1016/j.trpro.2021.01.008.

[6] Ö. Ergun and J. B. Orlin, “A dynamic programming methodology

in very large scale neighborhood search applied to the traveling

salesman problem,” Discret. Optim., vol. 3, no. 1, pp. 78–85, 2006,

doi: 10.1016/j.disopt.2005.10.002.

[7] B. Toaza and D. Esztergár-Kiss, “A review of metaheuristic

algorithms for solving TSP-based scheduling optimization

problems [Formula presented],” Appl. Soft Comput., vol. 148, no.

October, 2023, doi: 10.1016/j.asoc.2023.110908.

[8] R. Martí, M. Sevaux, and K. Sörensen, “50 Years of

Metaheuristics,” Eur. J. Oper. Res., no. April, 2024, doi:

10.1016/j.ejor.2024.04.004.

https://doi.org/10.1016/j.iswa.2023.200242
https://doi.org/10.1016/j.matcom.2023.12.003
https://doi.org/10.1016/j.icte.2023.07.001
https://doi.org/10.1016/j.dam.2011.01.026
https://doi.org/10.1016/j.trpro.2021.01.008
https://doi.org/10.1016/j.disopt.2005.10.002
https://doi.org/10.1016/j.asoc.2023.110908
https://doi.org/10.1016/j.ejor.2024.04.004

28 JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 2, NO. 2, JULY 2024, PP. 24~28

[9] D. A. F. Anggraeni, V. R. Dianutami, and R. Tyasnurita,

“Investigation of Simulated Annealing and Ant Colony

optimization to Solve Delivery Routing Problem in Surabaya,

Indonesia,” Procedia Comput. Sci., vol. 234, pp. 592–601, 2024,

doi: 10.1016/j.procs.2024.03.044.

[10] S. Sariel, N. Erdogan, and T. Balch, “An Integrated Approach To

Solving the Real-World Multiple Traveling Robot Problem,” 5th

Int. Conf. Electr. Electron. Eng., 2007.

[11] C. Jiang, Z. Wan, and Z. Peng, “A new efficient hybrid algorithm

for large scale multiple traveling salesman problems,” Expert Syst.

Appl., vol. 139, 2020, doi: 10.1016/j.eswa.2019.112867.

[12] K. Sundar and S. Rathinam, “Algorithms for Heterogeneous,

Multiple Depot, Multiple Unmanned Vehicle Path Planning

Problems,” J. Intell. Robot. Syst. Theory Appl., vol. 88, no. 2–4, pp.

513–526, 2017, doi: 10.1007/s10846-016-0458-5.

[13] M. A. Al-Omeer and Z. H. Ahmed, “Comparative study of

crossover operators for the MTSP,” 2019 Int. Conf. Comput. Inf.

Sci. ICCIS 2019, pp. 1–6, 2019, doi:

10.1109/ICCISci.2019.8716483.

[14] P. Venkatesh and A. Singh, “Two metaheuristic approaches for the

multiple traveling salesperson problem,” Appl. Soft Comput., vol.

26, pp. 74–89, 2015, doi: 10.1016/j.asoc.2014.09.029.

[15] R. I. Bolaños, M. G. Echeverry, and J. W. Escobar, “A

multiobjective non-dominated sorting genetic algorithm (NSGA-II)

for the multiple traveling salesman problem,” Decis. Sci. Lett., vol.

4, no. 4, pp. 559–568, 2015, doi: 10.5267/j.dsl.2015.5.003.

https://doi.org/10.1016/j.procs.2024.03.044
https://doi.org/10.1016/j.eswa.2019.112867
https://doi.org/10.1007/s10846-016-0458-5
https://doi.org/10.1109/ICCISci.2019.8716483
https://doi.org/10.5267/j.dsl.2015.5.003

