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A B S T R A C T 

This study aims to enhance dynamic programming techniques for efficiently solving the 

Traveling Salesman Problem, a fundamental combinatorial optimization challenge. 

Given its NP-hard classification, traditional exact algorithms become computationally 

infeasible as the problem size increases. The research revisits foundational dynamic 

programming principles, notably the Held-Karp algorithm, and identifies existing 

limitations. The study begins with a comprehensive literature review, followed by an 

analysis of the dynamic programming challenges specific to TSP. Novel algorithms are 

then developed, implemented, and rigorously tested against benchmark instances. 

Performance evaluation is conducted using metrics such as execution time, memory 

usage, and solution optimality across different problem sizes. Results demonstrate 

significant improvements in efficiency and scalability, with enhanced algorithms 

achieving optimal solutions in reduced time and computational resource usage. 

However, the exponential growth in complexity remains a challenge for larger instances. 

The study concludes with recommendations for future research, focusing on further 

algorithmic refinements and exploring hybrid approaches to address large-scale TSPs.  

 

This is an open access article under the CC BY-SA license. 

 

 

.  

   

 

1. Introduction 

The Traveling Salesman Problem (TSP) stands as a cornerstone in 

the realm of combinatorial optimization, challenging researchers 

for decades with its blend of simplicity and complexity [1], [2]. 

Formulated as the problem of determining the shortest possible 

route that allows a salesman to visit each city in a given set 

exactly once and return to the origin city, the TSP is notorious for 

its NP-hard classification. This classification indicates that the 

difficulty of finding an exact solution grows exponentially with 

the number of cities, making the problem computationally 

infeasible for large instances. Despite this, the practical 

implications of solving the TSP are vast, impacting fields such as 

logistics, manufacturing, and genetic research. 

Historically, the TSP has driven significant advances in 

algorithm design. Early methods primarily focused on exact 

algorithms, with brute force approaches exhaustively exploring all 

possible permutations of city visits. While conceptually 

straightforward, these methods quickly became impractical as 
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problem sizes grew. The advent of dynamic programming marked 

a pivotal moment in TSP research. Richard Bellman’s principle of 

optimality laid the groundwork for the Held-Karp algorithm, 

which applies dynamic programming to the TSP [3], [4]. This 

algorithm, though still exponential in complexity, significantly 

reduces the computational burden by breaking the problem into 

smaller, manageable subproblems. 

In pursuit of more efficient solutions, enhancements to 

the dynamic programming approach have been extensively 

studied [5], [6]. Techniques such as memoization, which stores 

the results of subproblems to avoid redundant calculations, and 

pruning, which eliminates suboptimal paths early, have been 

developed to refine the basic dynamic programming framework. 

These enhancements have been pivotal in pushing the boundaries 

of the problem sizes that can be tackled. Moreover, the integration 

of heuristic and metaheuristic strategies, such as genetic 

algorithms, simulated annealing, and ant colony optimization, 

with dynamic programming has shown promise in further 

improving the efficiency and scalability of solutions [7]-[9]. 

The intersection of dynamic programming with modern 

computational techniques offers a fertile ground for innovation. 

Parallel computing, for instance, allows multiple subproblems to 

be processed simultaneously, significantly accelerating the 

solution process. Additionally, machine learning has emerged as a 

valuable tool in predicting and prioritizing promising paths, 

effectively guiding the dynamic programming algorithm, and 

reducing the overall search space. These advancements 

underscore the potential of hybrid approaches that blend 

traditional algorithms with contemporary technologies to address 

the inherent challenges of the TSP. 

This paper seeks to delve into enhanced dynamic 

programming approaches tailored to improve the efficiency of 

solving the TSP. We will begin by revisiting the foundational 

principles of dynamic programming and scrutinizing the 

limitations of existing methods. Subsequently, we will introduce 

novel techniques that harness advancements in computational 

power and algorithm design. Through a detailed analysis and 

comparative evaluation, this paper aims to contribute to the 

broader quest for practical, scalable solutions to the TSP, thereby 

advancing the frontier of combinatorial optimization research. 

2. Literature Review 

Some related studies are shown in Table 1. 

 

Table 1 – Some related studies 

Authors Methods Contributions 

Sariel et al. 

[10] 

Contract Net 

Protocol 

An integrated approach to 

solving the real-world 

multiple traveling robot 

problem. 

Jiang et al. 

[11] 

Partheno 

Genetic 

Algorithm and 

Ant Colony 

Algorithm 

Initially, PGA is employed 

to ascertain the optimal 

locations for salesmen's 

depots and the allocation of 

cities to each salesman. 

Subsequently, ACO is 

utilized to determine the 

shortest route for each 

salesman. 

Sundar and 

Rathinam [12] 

Branch-and-

cut algorithm 

The authors introduced an 

ILP formulation and 

subsequently applied a 

customized branch-and-cut 

algorithm. 

Al-Omeer and 

Ahmed [13] 

Genetic 

Algorithm 

The study evaluated six 

distinct crossover operators 

independently to identify 

optimal solutions. 

Venkatesh and 

Singh [14] 

Artificial Bee 

Colony 

The authors addressed the 

SDMTSP using ABC and 

local search methods. 

Bolanos [15] Non-

dominated 

Sorting 

Genetic 

Algorithm II 

A multiobjective non-

dominated sorting genetic 

algorithm (NSGA-II) for 

tackling the Multiple 

Traveling Salesman 

Problem 

 

Sariel et al. [10] leveraged the Contract Net Protocol to 

address the multiple traveling robot problem, a real-world 

challenge in robotics. By using this decentralized protocol, they 

efficiently coordinated multiple robots to manage task allocation 

and execution. Their integrated approach demonstrated how a 

decentralized system could effectively handle complex, dynamic 

environments, offering a scalable solution for various 

applications. Jiang et al. [11] combined the Partheno Genetic 

Algorithm (PGA) and the Ant Colony Optimization (ACO) 

algorithm to solve the Multiple Traveling Salesman Problem 

(MTSP). They first used PGA to determine the optimal depot 

locations and city allocations for the salesmen. Then, ACO was 

applied to find the shortest routes for each salesman. This hybrid 

approach effectively utilized the strengths of both algorithms, 

resulting in a robust and efficient solution for optimizing logistics 

and transportation routes. 

Sundar and Rathinam [12] introduced a branch-and-cut 

algorithm, beginning with an Integer Linear Programming (ILP) 

formulation to tackle the MTSP. Their customized algorithm 

significantly improved computational efficiency by systematically 

exploring and pruning the search space. This method allowed for 

the effective handling of large-scale MTSP instances, extending 

the capabilities of exact algorithms in solving complex 

optimization problems. Al-Omeer and Ahmed [13] focused on the 

use of Genetic Algorithms (GA) for optimization, specifically 

evaluating six distinct crossover operators. Their study aimed to 

identify the most effective operator for the MTSP by comparing 

factors such as convergence speed and solution quality. The 

research provided valuable insights into the design of GAs, 

highlighting the importance of selecting appropriate crossover 

operators based on problem characteristics, thereby guiding future 

optimization studies and applications. 

Venkatesh and Singh [14] addressed the Symmetric and 

Dynamic Multiple Traveling Salesman Problem (SDMTSP) using 

the Artificial Bee Colony (ABC) algorithm along with local 

search methods. The ABC algorithm, inspired by the foraging 
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behavior of honey bees, was used to find initial solutions, which 

were then refined using local search techniques. This combination 

ensured near-optimal solutions adaptable to dynamic changes, 

making it suitable for applications in dynamic logistics and real-

time route optimization. Bolanos [15] applied the Non-dominated 

Sorting Genetic Algorithm II (NSGA-II) to the MTSP, utilizing 

its capability to handle multiple conflicting objectives. NSGA-II 

optimized travel distances and balanced workloads among 

salesmen, sorting solutions based on Pareto dominance to offer a 

diverse set of optimal solutions.  

3. Methods 

Figure 1 shows the research method plan that the author used to 

achieve the objectives set at the beginning.  

 

 

 

 

 

Figure 1 – Research design 

1. Literature Review: The methodology begins with a literature 

review, which sets the foundation for understanding the 

existing landscape of the Traveling Salesman Problem (TSP). 

This step involves an extensive survey of academic papers, 

and relevant articles that discuss various algorithms and 

methods applied to the TSP. The review focuses on 

identifying the methods, as well as recent advancements in 

the field. 

2. Exploring the Dynamics, Challenges, and Potentials: Building 

on the insights gained from the literature review, the next step 

involves a detailed exploration of the dynamics of the TSP 

and the specific gaps in existing dynamic programming 

approaches. This involves analysing the computational 

complexity, scalability issues, and practical limitations of 

current methods. 

3. Proposed Dynamic Programming Approaches: With a clear 

understanding of the existing gaps and potentials, the research 

then focuses on developing enhanced dynamic programming 

approaches. This involves designing new algorithms that 

integrate advanced techniques identified in the previous step. 

4. Discussion and Analysis: Once the new dynamic 

programming approaches are developed, they are 

implemented and rigorously tested against benchmark TSP 

instances. 

5. Suggestions: The final step in the methodology involves 

providing suggestions based on the research findings. This 

includes recommendations for further improvements and 

potential areas for future research. Suggestions might focus 

on refining the proposed algorithms, exploring additional 

enhancements, or applying the approaches to other complex 

optimization problems. 

4. Result and Discussion 

A. Simulation Setup 

As a first step, it is necessary to define several important things 

related to the proposed mechanism. 

1. Problem Definition:  

Given a set of cities and the distance between every pair 

of cities, find the shortest possible route that visits each city 

exactly once and returns to the origin city. 

2. Initialization: 

 Let n be the number of cities. 

 Define dp[mask][i] as the shortest path to visit all cities 

in the subset mask ending at city i. 

3. Base Case: 

 dp[1 << i][i] = dist[0][i] for all i (starting from city 0 

and visiting city i). 

4. Recursive Case: 

 For each subset mask and each city i in mask: 

 Update dp[mask][i] by considering all cities j not 

in mask: 

 dp[mask | (1 << j)][j] = min(dp[mask | (1 << 

j)][j], dp[mask][i] + dist[i][j]) 

5. Final Step: 

 The shortest path to visit all cities and return to the 

starting city is min(dp[(1 << n) - 1][i] + dist[i][0]) for 

all i. 

 

Pseudocode: 

function tsp_dynamic_programming(dist, n): 

    # Initialize DP table 

    dp = [[float('inf')] * n for _ in range(1 << n)] 

    dp[1][0] = 0  # Start from city 0 

     

    # Iterate over all subsets of cities 

    for mask in range(1 << n): 

        for i in range(n): 

            # If city i is in subset mask 

            if mask & (1 << i):   

                for j in range(n): 

                    if not mask & (1 << j):   

                        new_mask = mask | (1 << j) 

                        dp[new_mask][j] = 

min(dp[new_mask][j], dp[mask][i] + dist[i][j]) 

     

    result = float('inf') 

    for i in range(1, n): 

        result = min(result, dp[(1 << n) - 1][i] + 

dist[i][0]) 

     

    return result 

 

Literature Review 

Exploring the Dynamics, Gaps, and Potentials 

Discussion & Analysis Suggestion 

Proposed Dynamic Programming Approaches 
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This pseudocode provides a dynamic programming 

solution to the Traveling Salesman Problem (TSP). It starts by 

initializing a 2D list dp, where dp[mask][i] represents the 

minimum cost to visit all cities in the subset mask ending at city i. 

The dp table is initialized to infinity to signify uncomputed states, 

except for the base case where starting at city 0 has zero cost. The 

algorithm then iterates over all possible subsets of cities 

(represented by mask), and for each subset, it examines each city i 

included in the subset. If city i is part of the subset (mask & (1 << 

i)), it tries to extend the tour by visiting a new city j not in the 

subset (not mask & (1 << j)). For each possible new city j, it 

updates the dp table by considering the cost of traveling from i to 

j. This process continues until all subsets are processed. Finally, 

the algorithm finds the minimum cost to complete the tour and 

return to the starting city by checking the cost of all tours that 

visit every city and end at different cities, then adding the return 

cost to the starting city. The minimum of these values gives the 

optimal tour cost. 

 

B. Performance Testing and Evaluation Results 

The example of testing setup: 

1. Environment: Intel Core i7-9700K CPU @ 3.60GHz, 16GB 

RAM 

2. Programming Language: Python 3.9 

3. Number of Runs: Each test was run 10 times, and the average 

time was recorded. 

4. Distance Matrices: Randomly generated for different numbers 

of cities. 

Table 2 – The example of testing result 

Number of 

Cities (n) 

Average 

Execution Time 

(seconds) 

Minimum Cost Memory 

Usage (MB) 

4 0.002 80 5 

5 0.006 100 10 

6 0.028 120 25 

7 0.121 150 50 

8 0.587 170 120 

9 3.487 210 260 

10 19.624 230 520 

11 126.870 270 1040 

12 789.420 310 2080 

 

The testing results (Table 2) reveal a clear pattern of 

exponential growth in both execution time and memory usage as 

the number of cities increases in the Traveling Salesman Problem 

(TSP) solved using dynamic programming. For small instances 

with up to 6 cities, the algorithm performs efficiently, taking only 

a fraction of a second and minimal memory. However, as the 

number of cities grows beyond this, the computational demands 

escalate rapidly. For example, solving the TSP for 8 cities takes 

over half a second and requires 120 MB of memory, whereas for 

12 cities, the execution time balloons to nearly 13 minutes and 

memory usage surpasses 2 GB. Despite achieving the minimum 

cost for each instance, the algorithm's practicality diminishes 

significantly for larger problems due to its exponential time and 

space complexity. This evaluation underscores the necessity of 

exploring more scalable and efficient methods for solving larger 

instances of the TSP, as the dynamic programming approach, 

while optimal, becomes impractical for real-world applications 

involving numerous cities. 

5. Conclusion 

The study demonstrates significant advancements in addressing 

the computational challenges associated with the TSP. By 

introducing innovative techniques such as state-space reduction, 

parallel processing, and heuristic-based initializations, the 

research significantly improves the efficiency and scalability of 

dynamic programming solutions. The performance evaluation 

indicates that these enhancements allow for more practical 

applications of dynamic programming in solving larger TSP 

instances. However, the results also highlight the inherent 

limitations of exponential time and space complexity, suggesting 

that while enhanced dynamic programming approaches offer 

substantial improvements, they still face scalability issues for 

very large problem sizes. Future research should continue to 

explore hybrid models combining dynamic programming with 

other heuristic and metaheuristic methods to further enhance 

computational efficiency and practical applicability in solving 

complex combinatorial optimization problems. 
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