

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 49~53

Online version at https://journal.lenterailmu.com/index.php/josapen

JOSAPEN

E-ISSN: 3031-2272 (Online)

* Corresponding author: A Sanmarino

 E-mail address: sanmorino@uigm.ac.id

Vector Space Model-based Information Retrieval Systems at South

Sumatera Regional Libraries

M. Akbar As Shiddiqi, A Sanmarino

University of Indo Global Mandiri, Palembang, Indonesia

A R T I C L E I N F O

Article history:

Received 15 January 2023

Revised 21 March 2023

Accepted 29 May 2023

Keywords:

Information Retrieval

Vector Space Model (VSM)

Library Collections

TF-IDF Calculation

Document Representation

A B S T R A C T

This study presents an overview of the research aimed at optimizing library information

retrieval through the utilization of the Vector Space Model (VSM) method in a computer

science context. Libraries, as publicly financed collections, provide extensive knowledge

resources, eliminating the need for individual book purchases. However, the challenge

lies in efficiently navigating the expanding library collections. To tackle this issue, the

study employs information retrieval techniques, particularly the VSM method, which

assesses term similarity by assigning weights to terms, enabling document and query

representation as vectors. The relevance between documents and queries is measured

through vector similarity. This approach, integrated with indexing, streamlines

collection retrieval in libraries. Employing the Waterfall model for system development,

the research outlines phases like analysis, design, coding, testing, and implementation.

While effective, the model's rigidity in accommodating evolving requirements poses

limitations. The VSM method's numerical representation of text documents facilitates

precise similarity calculations, supported by TF-IDF values indicating term importance

in documents relative to the corpus. The study further extends to system design using

UML diagrams and a visitor interface, integrating VSM for efficient search

functionality. Black-box testing confirms the robustness of the system components and

interfaces. Overall, this research presents a systematic approach to enhance information

retrieval in libraries, emphasizing the VSM's pivotal role in optimizing document

searches within expansive collections.

This is an open access article under the CC BY-SA license.

.

1. Introduction

A library is a collection of books and magazines. Although it can

be interpreted as an individual's private collection, a library is

more generally known as a large collection that is financed and

operated by a city or institution and is used by the community.

With the existence of libraries, to increase people's knowledge

there is no need to buy many books at their own expense. As time

goes by, the number of book and magazine collections in libraries

https://creativecommons.org/licenses/by-sa/4.0/

50 JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 49~53

increases. With such a large collection, it creates a new problem,

namely the difficulty of searching for book or magazine

collections. So searching for a collection of books or magazines

takes quite a long time.

Based on these problems, the author tries to provide a

solution by utilizing one of the fields of computer science, namely

information retrieval. Information retrieval is related to the

representation of storage, structure, and access of documents

which aims to facilitate the search for information. Therefore, this

system is very influential for library visitors in searching for

documents or information that is relevant to what they want. To

get relevant documents based on a query, the author uses the

Vector Space Model (VSM) method [1], [2]. VSM is a method

for determining the level of closeness or similarity of terms by

weighting the terms. This Vector Space Model method represents

a document and query in a vector. The relevance of a document to

a query is based on the similarity between the document vector

and the query vector. One way is to enter one or more terms.

These terms will later be matched with a data representation

called an index. Indexes are the data structures most widely used

by information retrieval systems. Indexes include parts of the

types of library materials. The purpose of the search mechanism

is as a search tool (collection retrieval) in the library. So with this

guide (index), users can search for collections quickly and

precisely in the library. Furthermore, this index is used to search

for a document using the concept of information retrieval.

Looking at the use of indexes, the author tries to use the

concept of information retrieval which is implemented in a web-

based text document storage system. By applying the concept of

information retrieval, it is hoped that the system can search for

documents more quickly and accurately.

2. Method

Figure 1 shows the research method that the author used to

achieve the objectives set at the beginning. The system

development stage used is the waterfall model. The waterfall

model is an SDLC method that has the characteristic that each

result in Waterfall must be completed first before proceeding to

the next phase. The Waterfall Model is a software development

methodology that follows a linear and structured flow [3], [4], [5].

It consists of a series of phases that must be completed

sequentially, and each phase is dependent on the completion of

the previous phase. Following are some of the main phases in the

Waterfall model:

a. Analysis: The stage where system requirements are

gathered and thoroughly understood. It involves interaction

with users and stakeholders to define functional and non-

functional requirements.

b. Design: After the requirements are collected, the next step

is to design the system architecture. This includes designing

the system structure, identifying algorithms, and preparing

the necessary technical specifications.

c. Coding: This stage involves coding the software according

to the specifications created at the design stage. The

development team creates code based on the approved

design.

d. Testing: After implementation, the system is tested to

ensure that all requirements have been met and that there

are no significant bugs or errors. These tests include

functional, performance, and security tests.

e. Delivery/Implementation: Once the system passes all the

tests, it is ready to be implemented and released into a

production environment or used by end users.

One of the main disadvantages of the Waterfall model

is its inability to handle the frequent changes in requirements that

occur in the software development cycle. Due to the linear nature

of this model, it is difficult to return to a previous phase once a

particular phase has been completed.

Figure 1 – Research design

The Vector Space Model (VSM) is a mathematical

framework used in information retrieval and natural language

processing to represent text documents as numerical vectors in a

high-dimensional space. It's a way to quantify and compare the

Problem Identification

Research Purposed

Literature Review

Implementation

Design

Testing

Coding

Analysis

Vector Space Model

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 49~53 51

similarity between documents based on the occurrences of words

or terms within them.

How the Vector Space Model Works:

1. Document-Term Matrix:

 Each document in a corpus is represented as a vector.

 The entire corpus forms a matrix where each row

represents a document, and each column represents a

term in the vocabulary.

2. Term Frequency (TF):

 TF measures the frequency of a term in a document.

 Higher TF indicates the importance of a term within a

document.

3. Inverse Document Frequency (IDF):

 IDF measures the importance of a term in the entire

corpus.

 Terms that appear in many documents have lower IDF

values, while terms appearing in fewer documents have

higher IDF values.

4. TF-IDF Weighting:

 TF-IDF combines TF and IDF to calculate the weight of

a term in a document.

 High weight is assigned to terms that are frequent in a

document but rare in the entire corpus.

For example, consider a small corpus with three

documents:

1. Document 1: "Machine learning is fascinating."

2. Document 2: "Learning about machine learning is

important."

3. Document 3: "Natural language processing is a part of

machine learning."

Steps to Construct Vector Space Model:

1. Tokenization and Vocabulary Creation:

 Tokenize the documents into terms: "machine",

"learning", "fascinating", "important", "natural",

"language", "processing", "part".

 Form a vocabulary: ["machine", "learning",

"fascinating", "important", "natural", "language",

"processing", "part"].

2. TF-IDF Calculation (Table 1):

Table 1 – TF-IDF Calculation

Term Document 1 Document 2 Document 3

machine 1 1 1

learning 1 2 1

fascinating 1 0 0

important 0 1 0

natural 0 0 1

language 0 0 1

processing 0 0 1

part 0 0 1

3. Vector Representation:

 Document 1: [1, 1, 1, 0, 0, 0, 0, 0]

 Document 2: [1, 2, 0, 1, 0, 0, 0, 0]

 Document 3: [1, 1, 0, 0, 1, 1, 1, 1]

The Vector Space Model provides a structured way to

represent text documents numerically, allowing for efficient

information retrieval, document similarity calculations, and other

text processing tasks.

3. Result and Discussion

In this section, we will continue the discussion of TF-IDF

Calculation (Table 1) with a detailed explanation of the equations.

Inverse Document Frequency (IDF) measures the importance of a

term in the entire corpus. Calculate IDF for each term in the

corpus using Equation (1):

 (1)

TF-IDF is the product of TF and IDF for each term in

each document. Calculate TF-IDF for each term in each document

using Equation (2):

 (2)

For example, TF-IDF(machine, Document 1) = 1 * 0 =

0. The TF-IDF values form the vector representation of each

document in the vector space.

 Document 1: [0, 0, log(3), 0, 0, 0, 0, 0]

 Document 2: [0, 0, 0, log(2/3), 0, 0, 0, 0]

 Document 3: [0, 0, 0, 0, log(3), log(3), log(3), log(3)]

The values in these vectors are the TF-IDF weights,

reflecting the importance of terms in the documents relative to the

entire corpus. This model enables comparisons and similarity

calculations between documents based on their vector

representations. After done with the Vector Space Model, the

author started designing the proposed system by creating a UML

diagram [6], [7]. The proposed system design includes Use case

52 JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 49~53

diagrams, Activity diagrams, Sequence diagrams, and Class

diagrams.

3.1. Use diagram

Several things need to be described, namely actors and

use cases. Actors are users who are connected to the system and

can be people (indicated by their role). The actor is symbolized by

the figure of a stick man with a noun at the bottom that states the

role/system. Use cases are depicted with an ellipse symbol with

the name of the active verb inside which states the activity from

the actor's perspective [8], [9].

3.2. Activity diagram

An activity diagram is a description of function paths in

an information system [10]. In full, the activity diagram defines

where the system process starts, where it stops, what activities

occur during the system process, and what sequence these

activities occur in.

3.3. Sequence diagram

Based on the use case that has been created, a sequence

diagram is obtained which describes the behavior of objects in the

use case by describing the lifetime of the object and the messages

sent and received between objects.

3.4. Class diagram

Class diagrams describe the types of objects in the

system and the various static relationships that exist between

them [11]. Class diagrams show the properties and operations of a

class and the boundaries contained in the object relationships.

3.5. System Interface

This visitor interface is a page for visitors in the book

search process (Figure 2). Search process based on book title,

search for books by directly clicking the Search button.

Figure 2 – Login page

 Next, the author carries out black box testing as an

initial stage of evaluation of the system that has been created

[12]-[15]. The test results show that all functions and interfaces of

the proposed system can run well.

4. Conclusion

The utilization of libraries as repositories of knowledge eliminates

the necessity for individuals to amass extensive personal book

collections, as these public institutions provide access to a broad

range of materials financed and managed by cities or institutions.

However, the accumulation of a vast array of books and

magazines within libraries introduces the challenge of efficiently

locating specific collections. To address this issue, the author

leverages information retrieval principles, specifically employing

the Vector Space Model (VSM) method, which quantifies term

similarity by assigning weights to terms in a document. This

technique involves representing documents and queries as

vectors, and their relevance is measured based on vector

similarity. To expedite and refine the search process, terms are

indexed, a crucial aspect widely employed in information

retrieval systems, aiding in rapid and accurate collection retrieval

within the library. The author proceeds to apply information

retrieval concepts within a web-based text document storage

system, aiming to enhance the speed and precision of document

searches. The research employs the Waterfall model for system

development, a structured approach that progresses sequentially

through phases like analysis, design, coding, testing, and

implementation. However, the model's inflexibility in

accommodating changing requirements throughout development

stands as a significant drawback. The Vector Space Model, a key

methodology in information retrieval, enables numerical

representation of text documents, facilitating efficient document

similarity calculations and information retrieval processes. The

calculated TF-IDF values, representing term importance within

documents relative to the entire corpus, support comparisons

between documents. The subsequent phase involves system

design with UML diagrams, including use case, activity,

sequence, and class diagrams, delineating system functionality,

user interaction, and object behavior. Additionally, a visitor

interface for book search processes is created, integrating the

Vector Space Model stages for efficient search functionalities.

The system undergoes black-box testing, affirming the proper

functionality of all system components and interfaces.

Acknowledgements

We would like to acknowledge University of Indo Global Mandiri

for supporting this work.

REFERENCES

[1] D. Xu and T. Miller, “A simple neural vector space model for

medical concept normalization using concept embeddings,” J.

Biomed. Inform., vol. 130, no. January, p. 104080, 2022, doi:

10.1016/j.jbi.2022.104080.

[2] H. Du and Y. Bin Kang, “An open-source framework for

https://doi.org/10.1016/j.jbi.2022.104080

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 49~53 53

ExpFinder integrating N-gram vector space model and μCO-

HITS[Formula presented],” Softw. Impacts, vol. 8, no. March, p.

100069, 2021, doi: 10.1016/j.simpa.2021.100069.

[3] K. D. Prasetya, Suharjito, and D. Pratama, “Effectiveness Analysis

of Distributed Scrum Model Compared to Waterfall approach in

Third-Party Application Development,” Procedia Comput. Sci.,

vol. 179, no. 2019, pp. 103–111, 2021, doi:

10.1016/j.procs.2020.12.014.

[4] T. Thesing, C. Feldmann, and M. Burchardt, “Agile versus

Waterfall Project Management: Decision model for selecting the

appropriate approach to a project,” Procedia Comput. Sci., vol.

181, pp. 746–756, 2021, doi: 10.1016/j.procs.2021.01.227.

[5] A. A. S. Gunawan, B. Clemons, I. F. Halim, K. Anderson, and M.

P. Adianti, “Development of e-butler: Introduction of robot system

in hospitality with mobile application,” Procedia Comput. Sci., vol.

216, no. 2019, pp. 67–76, 2022, doi: 10.1016/j.procs.2022.12.112.

[6] G. Bergström et al., “Evaluating the layout quality of UML class

diagrams using machine learning,” J. Syst. Softw., vol. 192, p.

111413, 2022, doi: 10.1016/j.jss.2022.111413.

[7] H. Wu, “QMaxUSE: A new tool for verifying UML class diagrams

and OCL invariants,” Sci. Comput. Program., vol. 228, p. 102955,

2023, doi: 10.1016/j.scico.2023.102955.

[8] P. Danenas, T. Skersys, and R. Butleris, “Natural language

processing-enhanced extraction of SBVR business vocabularies and

business rules from UML use case diagrams,” Data Knowl. Eng.,

vol. 128, no. February, p. 101822, 2020, doi:

10.1016/j.datak.2020.101822.

[9] Meiliana, I. Septian, R. S. Alianto, Daniel, and F. L. Gaol,

“Automated Test Case Generation from UML Activity Diagram

and Sequence Diagram using Depth First Search Algorithm,”

Procedia Comput. Sci., vol. 116, pp. 629–637, 2017, doi:

10.1016/j.procs.2017.10.029.

[10] Z. Daw and R. Cleaveland, “Comparing model checkers for timed

UML activity diagrams,” Sci. Comput. Program., vol. 111, no. P2,

pp. 277–299, 2015, doi: 10.1016/j.scico.2015.05.008.

[11] F. Chen, L. Zhang, X. Lian, and N. Niu, “Automatically

recognizing the semantic elements from UML class diagram

images,” J. Syst. Softw., vol. 193, p. 111431, 2022, doi:

10.1016/j.jss.2022.111431.

[12] D. Felicio, J. Simao, and N. Datia, “Rapitest: Continuous black-box

testing of restful web apis,” Procedia Comput. Sci., vol. 219, no.

2022, pp. 537–545, 2023, doi: 10.1016/j.procs.2023.01.322.

[13] H. Bostani and V. Moonsamy, “EvadeDroid: A Practical Evasion

Attack on Machine Learning for Black-box Android Malware

Detection,” Comput. Secur., p. 103676, 2021, doi:

10.1016/j.cose.2023.103676.

[14] F. Pagano, A. Romdhana, D. Caputo, L. Verderame, and A. Merlo,

“SEBASTiAn: A static and extensible black-box application

security testing tool for iOS and Android applications,” SoftwareX,

vol. 23, p. 101448, 2023, doi: 10.1016/j.softx.2023.101448.

[15] C. Cronley et al., “Designing and evaluating a smartphone app to

increase underserved communities’ data representation in

transportation policy and planning,” Transp. Res. Interdiscip.

Perspect., vol. 18, no. January, p. 100763, 2023, doi:

10.1016/j.trip.2023.100763.

https://doi.org/10.1016/j.simpa.2021.100069
https://doi.org/10.1016/j.procs.2020.12.014
https://doi.org/10.1016/j.procs.2021.01.227
https://doi.org/10.1016/j.procs.2022.12.112
https://doi.org/10.1016/j.jss.2022.111413
https://doi.org/10.1016/j.scico.2023.102955
https://doi.org/10.1016/j.datak.2020.101822
https://doi.org/10.1016/j.procs.2017.10.029
https://doi.org/10.1016/j.scico.2015.05.008
https://doi.org/10.1016/j.jss.2022.111431
https://doi.org/10.1016/j.procs.2023.01.322
https://doi.org/10.1016/j.cose.2023.103676
https://doi.org/10.1016/j.softx.2023.101448
https://doi.org/10.1016/j.trip.2023.100763

