

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 44~48

Online version at https://journal.lenterailmu.com/index.php/josapen

JOSAPEN

E-ISSN: 3031-2272 (Online)

* Corresponding author: Lidia Permata Sari

 Email: mobil1uigm@gmail.com

Cosine Similarity-based Plagiarism Detection on Electronic Documents

Lidia Permata Sari

Department of Information System, Palembang, Indonesia

A R T I C L E I N F O

Article history:

Received 10 January 2023

Revised 15 March 2023

Accepted 24 May 2023

Keywords:

Plagiarism Detection

Cosine Similarity

Electronic Documents

Academic theses

Similarity Thresholds

A B S T R A C T

This study addresses the prevalent issue of plagiarism in academic theses documents,

recognizing the potential for undetected similarities within various sections of

documents, escaping supervisor oversight. Proposing a solution utilizing the cosine

similarity method—a robust technique in natural language processing and document

analysis—this research aims to mitigate plagiarism occurrences. The method's benefits,

such as independence from document length and high accuracy, advocate for its

adoption in plagiarism detection. The study delineates the Waterfall model employed for

systematic development, showcasing its structured but inflexible nature in

accommodating evolving software requirements. Additionally, the elucidation of cosine

similarity mechanics elucidates its pivotal role in quantifying textual resemblance

between documents. Practical demonstrations using TF-IDF vectorization and cosine

similarity computation offer a step-by-step understanding of the method's

implementation. System design, illustrated through UML diagrams and system interface

depictions, underscores the comprehensive approach taken in creating a plagiarism

detection application. Lastly, successful Black Box testing confirms the application's

adherence to functional criteria, validating its efficiency in identifying potential

instances of plagiarism. This study contributes significantly to addressing plagiarism

concerns through a robust detection mechanism.

This is an open access article under the CC BY-SA license.

.

1. Introduction

The thesis is the final assignment that a student must complete in

their lecture activities and is mandatory for every student. A

student's thesis is usually the result of research that has been

carried out for approximately one semester.

The theses that students work on usually still contain

plagiarism and may escape the supervision of the supervisor. In a

thesis, there may be similarities in the title, abstract, problems,

written content, methods used, discussion, research objects, and

results. Through this study, the author proposes a mechanism for

detecting the similarity of several documents by comparing the

contents of the documents so that it will produce a value or

weight of the similarity of each thesis that has been compared.

One of the uses of comparing the contents of this document is to

help users group theses and enable users to find out whether the

contents of one thesis are similar to other theses [1], [2].

https://creativecommons.org/licenses/by-sa/4.0/

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 44~48 45

Until the time this study was carried out, a student

could still easily and freely copy-paste a proposal or thesis report

from start to finish without the supervisor knowing. Based on this,

it can be concluded that plagiarism is an action or shortcut for

stealing ideas, taking work results, and claiming other people's

work as one's own, without including references from the source.

This act of plagiarism often occurs in the world of education, such

as at the university level when writing a thesis report.

 Therefore, based on the background above, through

this study, the author intends to build a plagiarism detection

application using the cosine similarity method. The cosine

similarity method is used to test document similarity. Cosine

similarity is used to calculate similarity values by equating words

for words and is one of the techniques for measuring text

similarity that is widely used. The advantage of cosine similarity

is that it is not affected by the length and shortness of a document

and has a high level of accuracy. Cosine similarity can help

efforts to reduce the occurrence of plagiarism.

2. Method

Figure 1 illustrates the research methodology employed by the

author to fulfill the initial objectives. The system development

phase utilized in this study is the waterfall model, known for its

characteristic requiring completion of each phase before

advancing to the subsequent one. This approach follows a

structured and linear flow within software development [3], [4],

[5]. The process comprises a sequence of phases that must be

finished in order, where the conclusion of each phase is reliant on

the prior one. Below are several primary stages within the

Waterfall model:

1. Analysis: The stage where system requirements are

gathered and thoroughly understood. It involves interaction

with users and stakeholders to define functional and non-

functional requirements.

2. Design: After the requirements are collected, the next step

is to design the system architecture. This includes designing

the system structure, identifying algorithms, and preparing

the necessary technical specifications.

3. Coding: This stage involves coding the software according

to the specifications created at the design stage. The

development team creates code based on the approved

design.

4. Testing: After implementation, the system is tested to

ensure that all requirements have been met and that there

are no significant bugs or errors. These tests include

functional, performance, and security tests.

5. Delivery/Implementation: Once the system passes all the

tests, it is ready to be implemented and released into a

production environment or used by end users.

A significant drawback of the Waterfall model is its

challenge in accommodating frequent alterations in software

development requirements. Its linear structure makes it hard to

revisit a prior phase once it's completed, posing difficulties in

adapting to evolving needs during the cycle.

Figure 1 – Simple system development model

Cosine similarity is a metric used to measure the

similarity between two non-zero vectors. It's widely applied in

various fields such as natural language processing, information

retrieval, and machine learning.

Here's how it works:

1. Vector Representation: When considering documents, for

instance, each document is represented as a vector where

each dimension corresponds to a term or a feature, and the

value represents the frequency of that term in the document

(in bag-of-words models) or other numerical representations

(like TF-IDF - Term Frequency-Inverse Document

Frequency).

2. Calculating Cosine Similarity: Cosine similarity measures

the cosine of the angle between these vectors in a

multidimensional space. The formula for cosine similarity

between two vectors A and B is show in Equation (1):

‖ ‖‖ ‖
 (1)

Where:

 A⋅B represents the dot product of vectors A and B.

 ∥A∥ and ∥B∥ denote the Euclidean norms of vectors A

and B respectively.

3. Interpretation: The resulting value lies between -1 and 1. A

value closer to 1 signifies higher similarity, indicating that

the vectors are more aligned or similar in the vector space.

A value closer to -1 implies dissimilarity, and a value

around 0 means the vectors are orthogonal or dissimilar.

4. Applications: In natural language processing, cosine

similarity is often used in document similarity analysis,

information retrieval (such as search engines), clustering

algorithms, and recommendation systems to find similarities

between documents, queries, or items based on their

vectorized representations.

Analysis

Design

Testing

Implementation

Coding

46 JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 44~48

Cosine similarity is favored for its simplicity, efficiency

in high-dimensional spaces, and effectiveness in measuring

similarity between documents or items irrespective of their

magnitude, focusing on the direction of the vectors.

3. Result and Discussion

The author would like to explain how to use cosine similarity to

find text similarity between two documents with simple steps.

Suppose we have two text documents:

Document 1: "The cat sat on the mat."

Document 2: "The dog played outside."

Step 1: Preprocess the Texts

First, preprocess the texts to make them suitable for

analysis. Common preprocessing steps include lowercasing the

text, removing punctuation, and tokenizing the words.

doc1 = "The cat sat on the mat."

doc2 = "The dog played outside."

Preprocess the texts

doc1 = lowercase(doc1)

doc2 = lowercase(doc2)

doc1_tokens = tokenize(doc1)

doc2_tokens = tokenize(doc2)

Step 2: Vectorization using TF-IDF

 Next, represent the text data numerically using TF-IDF

vectorization. This step converts the text into numerical vectors

while considering the importance of words in each document

relative to their frequency across all documents.

 # Create a vocabulary and calculate TF-IDF

all_docs = [doc1, doc2]

vectorizer = TF-IDFVectorizer()

tfidf_matrix = vectorizer.fit_transform(all_docs)

Convert each document into TF-IDF vector representation

doc1_vector = tfidf_matrix[0]

doc2_vector = tfidf_matrix[1]

Step 3: Calculate Cosine Similarity

 Calculate the cosine similarity between the vectors

representing the documents using Equation (1). Cosine similarity

measures the cosine of the angle between the vectors and ranges

from -1 (completely dissimilar) to 1 (completely similar).

 # Calculate cosine similarity between doc1 and doc2 vectors

similarity_score = cosine_similarity(doc1_vector,

doc2_vector)

print("Cosine Similarity between the two documents:",

similarity_score)

Print the cosine similarity score between the two

documents, indicating their textual similarity. This pseudocode

outlines the process of using cosine similarity to measure text

similarity between two documents. In practice, you'd implement

these steps in a programming language like Python using libraries

such as scikit-learn to perform TF-IDF vectorization and cosine

similarity calculations.

After understanding how the Cosine Similarity method

finds text similarity between two documents, the author started

designing the proposed app by creating a UML diagram [6], [7].

The proposed system design includes Use case diagrams, Activity

diagrams, Sequence diagrams, and Class diagrams.

3.1. Use diagram

Several things need to be described, namely actors and

use cases. Actors are users who are connected to the system and

can be people (indicated by their role and not their

name/personnel). The actor is symbolized by the figure of a stick

man with a noun at the bottom that states the role/system. Use

cases are depicted with an ellipse symbol with the name of the

active verb inside which states the activity from the actor's

perspective [8], [9].

3.2. Activity diagram

An activity diagram is a description of function paths in

an information system [10]. In full, the activity diagram defines

where the system process starts, where it stops, what activities

occur during the system process, and what sequence these

activities occur in.

3.3. Sequence diagram

Based on the use case that has been created, a sequence

diagram is obtained which describes the behavior of objects in the

use case by describing the lifetime of the object and the messages

sent and received between objects.

3.4. Class diagram

Class diagrams describe the types of objects in the

system and the various static relationships that exist between

them [11]. Class diagrams show the properties and operations of a

class and the boundaries contained in the object relationships.

3.5. System Interface

A system interface refers to the point of interaction or

communication between different systems, components, or

software modules within a larger system or between separate

systems. It defines how different parts of a system communicate,

exchange data, or interact with each other. The two-document

detection display is the interface that the admin uses to input two

documents that will be checked for their level of similarity. These

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 44~48 47

two documents consist of the original document and the test

document. If the document has been entered or uploaded, the app

starts processing the check and the results of similarity score will

appear (Figure 2).

Figure 2 – Similarity check application interface

In the end, the author carries out Black Box testing of

the app that has been built. Black Box testing focuses on the

functional requirements of the software [12]-[15]. Thus, black

box testing allows software engineers to obtain a set of input

conditions that fully utilize all functional requirements for an app.

Black box testing seeks to find errors in the following criteria:

Incorrect or missing functions, Interface errors, Errors in data

structure or database access, and Performance errors. Based on

the test results, overall the app built meets all testing criteria, in

line with expectations at the start of the study.

4. Conclusion

In summary, this study delves into the pervasive issue of

plagiarism within academic theses documents, acknowledging the

potential for undetected similarities across various sections of

documents, which could evade supervisor scrutiny. The author

proposes a solution employing the cosine similarity method, a

robust technique widely utilized in natural language processing

and document analysis. The method's advantages, including its

JOURNAL OF COMPUTER SCIENCE APPLICATION AND ENGINEERING VOL. 1, NO. 2, JULY 2023, PP. 44~48 35

independence from document length and its accuracy, present a

compelling case for its application in plagiarism detection. The

study progresses to outline the Waterfall model adopted for

system development, illustrating its structured yet inflexible

nature when encountering evolving software requirements.

Moreover, the explanation of cosine similarity elucidates its

fundamental mechanics, showcasing its role in quantifying textual

similarity between documents. The practical demonstration using

TF-IDF vectorization and cosine similarity calculation provides a

step-by-step insight into the methodology's application. The

subsequent focus on system design, encapsulated in UML

diagrams and system interface depiction, portrays the

comprehensive approach undertaken in developing a plagiarism

detection application. Finally, the successful Black Box testing

affirms the app's adherence to functional requirements, validating

its efficacy in detecting potential plagiarism instances. This

holistic exploration highlights the study's contributions to tackling

plagiarism concerns through a robust detection mechanism.

Acknowledgements

We would like to acknowledge Department of Information

System UIGM for supporting this work.

REFERENCES

[1] S. Zouaoui and K. Rezeg, ―Multi-Agents Indexing System (MAIS)

for Plagiarism Detection,‖ J. King Saud Univ. - Comput. Inf. Sci.,

vol. 34, no. 5, pp. 2131–2140, 2022, doi:

10.1016/j.jksuci.2020.06.009.

[2] Z. Liu, J. Zhu, X. Cheng, and Q. Lu, ―ScienceDirect Available

ScienceDirect ScienceDirect Optimized Algorithm Design for Text

similarity Detection Optimized Design for Text similarity

Detection Based on Algorithm Artificial Intelligence and Natural

Language Based on Artificial Intelligence and Natural Language

Processing Processing,‖ Procedia Comput. Sci., vol. 228, pp. 195–

202, 2023, doi: 10.1016/j.procs.2023.11.023.

[3] K. D. Prasetya, Suharjito, and D. Pratama, ―Effectiveness Analysis

of Distributed Scrum Model Compared to Waterfall approach in

Third-Party Application Development,‖ Procedia Comput. Sci.,

vol. 179, no. 2019, pp. 103–111, 2021, doi:

10.1016/j.procs.2020.12.014.

[4] T. Thesing, C. Feldmann, and M. Burchardt, ―Agile versus

Waterfall Project Management: Decision model for selecting the

appropriate approach to a project,‖ Procedia Comput. Sci., vol.

181, pp. 746–756, 2021, doi: 10.1016/j.procs.2021.01.227.

[5] A. A. S. Gunawan, B. Clemons, I. F. Halim, K. Anderson, and M.

P. Adianti, ―Development of e-butler: Introduction of robot system

in hospitality with mobile application,‖ Procedia Comput. Sci., vol.

216, no. 2019, pp. 67–76, 2022, doi: 10.1016/j.procs.2022.12.112.

[6] G. Bergström et al., ―Evaluating the layout quality of UML class

diagrams using machine learning,‖ J. Syst. Softw., vol. 192, p.

111413, 2022, doi: 10.1016/j.jss.2022.111413.

[7] H. Wu, ―QMaxUSE: A new tool for verifying UML class diagrams

and OCL invariants,‖ Sci. Comput. Program., vol. 228, p. 102955,

2023, doi: 10.1016/j.scico.2023.102955.

[8] P. Danenas, T. Skersys, and R. Butleris, ―Natural language

processing-enhanced extraction of SBVR business vocabularies and

business rules from UML use case diagrams,‖ Data Knowl. Eng.,

vol. 128, no. February, p. 101822, 2020, doi:

10.1016/j.datak.2020.101822.

[9] Meiliana, I. Septian, R. S. Alianto, Daniel, and F. L. Gaol,

―Automated Test Case Generation from UML Activity Diagram

and Sequence Diagram using Depth First Search Algorithm,‖

Procedia Comput. Sci., vol. 116, pp. 629–637, 2017, doi:

10.1016/j.procs.2017.10.029.

[10] Z. Daw and R. Cleaveland, ―Comparing model checkers for timed

UML activity diagrams,‖ Sci. Comput. Program., vol. 111, no. P2,

pp. 277–299, 2015, doi: 10.1016/j.scico.2015.05.008.

[11] F. Chen, L. Zhang, X. Lian, and N. Niu, ―Automatically

recognizing the semantic elements from UML class diagram

images,‖ J. Syst. Softw., vol. 193, p. 111431, 2022, doi:

10.1016/j.jss.2022.111431.

[12] D. Felicio, J. Simao, and N. Datia, ―Rapitest: Continuous black-box

testing of restful web apis,‖ Procedia Comput. Sci., vol. 219, no.

2022, pp. 537–545, 2023, doi: 10.1016/j.procs.2023.01.322.

[13] H. Bostani and V. Moonsamy, ―EvadeDroid: A Practical Evasion

Attack on Machine Learning for Black-box Android Malware

Detection,‖ Comput. Secur., p. 103676, 2021, doi:

10.1016/j.cose.2023.103676.

[14] F. Pagano, A. Romdhana, D. Caputo, L. Verderame, and A. Merlo,

―SEBASTiAn: A static and extensible black-box application

security testing tool for iOS and Android applications,‖ SoftwareX,

vol. 23, p. 101448, 2023, doi: 10.1016/j.softx.2023.101448.

[15] C. Cronley et al., ―Designing and evaluating a smartphone app to

increase underserved communities’ data representation in

transportation policy and planning,‖ Transp. Res. Interdiscip.

Perspect., vol. 18, no. January, p. 100763, 2023, doi:

10.1016/j.trip.2023.100763.

48

https://doi.org/10.1016/j.jksuci.2020.06.009
https://doi.org/10.1016/j.procs.2023.11.023
https://doi.org/10.1016/j.procs.2020.12.014
https://doi.org/10.1016/j.procs.2021.01.227
https://doi.org/10.1016/j.procs.2022.12.112
https://doi.org/10.1016/j.jss.2022.111413
https://doi.org/10.1016/j.scico.2023.102955
https://doi.org/10.1016/j.datak.2020.101822
https://doi.org/10.1016/j.procs.2017.10.029
https://doi.org/10.1016/j.scico.2015.05.008
https://doi.org/10.1016/j.jss.2022.111431
https://doi.org/10.1016/j.procs.2023.01.322
https://doi.org/10.1016/j.cose.2023.103676
https://doi.org/10.1016/j.softx.2023.101448
https://doi.org/10.1016/j.trip.2023.100763

