

A Data-Driven Approach to Dengue Fever Mapping: A Review

Muhammad Mico Maulana, A Sanmorino

Faculty of Computer Science, Universitas IGM

Article Info	Abstract

Article history:

Received Feb 05th, 2025 Revised Feb 15th, 2025 Accepted Feb 20th, 2025

Corresponding Author:

A Sanmorino Email: <u>sanmorino@uigm.ac.id</u> Indonesia Dengue fever remains a pressing public health issue, especially in tropical and subtropical regions where urbanization, climate change, and ineffective vector control contribute to frequent outbreaks. Traditional surveillance methods often fall short in providing timely and accurate insights, necessitating data-driven approaches for improved monitoring and intervention. This review explores various computational methodologies, including Geographic Information Systems (GIS), machine learning, and predictive modeling, to enhance dengue outbreak mapping and risk assessment. Studies from Bangladesh, Thailand, Malaysia, and Reunion Island demonstrate how integrating epidemiological data with environmental and socio-economic factors improves outbreak prediction and control efforts. Advanced techniques, such as dynamic mapping of the basic reproduction number (R0) and deep learning models like Long Short-Term Memory (LSTM) networks, further enhance forecasting accuracy. Additionally, innovative control strategies, such as Wolbachia-infected mosquito releases, show promise in reducing dengue transmission. By synthesizing recent research, this review underscores the critical role of data science in strengthening dengue surveillance, prediction, and intervention strategies.

Keywords: Dengue Surveillance, Machine Learning, Predictive Modeling

Abstrak

Demam berdarah masih menjadi masalah kesehatan masyarakat yang mendesak, terutama di wilayah tropis dan subtropis, tempat urbanisasi, perubahan iklim, dan pengendalian vektor yang tidak efektif berkontribusi terhadap wabah yang sering terjadi. Metode pengawasan tradisional sering kali gagal dalam memberikan wawasan yang tepat waktu dan akurat, sehingga memerlukan pendekatan berbasis data untuk pemantauan dan intervensi yang lebih baik. Tinjauan ini mengeksplorasi berbagai metodologi komputasional, termasuk Sistem Informasi Geografis (SIG), pembelajaran mesin, dan pemodelan prediktif, untuk meningkatkan pemetaan wabah dan penilaian risiko demam berdarah. Studi dari Bangladesh, Thailand, Malaysia, dan Pulau Reunion menunjukkan bagaimana mengintegrasikan data epidemiologi dengan faktor lingkungan dan sosial ekonomi meningkatkan upaya prediksi dan pengendalian wabah. Teknik tingkat lanjut, seperti pemetaan dinamis angka reproduksi dasar (R0) dan model pembelajaran mendalam seperti jaringan Memori Jangka Pendek Panjang (LSTM), semakin meningkatkan akurasi perkiraan. Selain itu, strategi pengendalian yang inovatif, seperti pelepasan nyamuk yang terinfeksi Wolbachia, menunjukkan harapan dalam mengurangi penularan demam berdarah.

Kata kunci: Dengue Surveillance, Machine Learning, Predictive Modeling

This is an open access article under the CC BY-SA license.

Dengue fever remains a major global health concern, particularly in tropical and subtropical regions where rapid urbanization, climate change, and inadequate mosquito control contribute to frequent outbreaks. Traditional surveillance methods often struggle to provide timely and accurate insights into the disease's spread, leading to delays in response efforts. With advancements in data science, the integration of Geographic Information Systems (GIS), machine learning, and real-time environmental data has opened new possibilities for mapping and predicting dengue outbreaks more effectively. This study reviews various datadriven approaches used for dengue fever mapping, exploring their methodologies, effectiveness, and challenges (Table 1). By analyzing past and emerging techniques, this review aims to highlight the potential of data-driven models in enhancing early warning systems, optimizing resource allocation, and improving public health interventions.

Table 1 – Literatur Study						
Study	Background	Approach	Dataset	Method	Result	
Understandin	In 2023,	The study	The research	For the	The study	
g the	Bangladesh	aimed to	utilized	statistical	provided	
unprecedente	experienced an	elucidate the	epidemiological	display of the	insights into	
d 2023 dengue	unprecedented	epidemiologic	data from the	results, the	the	
outbreak in	surge in dengue	al	2022-2023	researchers	unprecedente	
Bangladesh: a	fever cases across	characteristics	dengue	used ARC	d surge in	
data-driven	all administrative	, spatial	outbreak in	Map 10.7 and	dengue fever	
analysis [1]	divisions.	distribution,	Bangladesh,	OriginPro	incidence	
		and potential	though specific	2024	across all	
		contributing	details about the	programs.	administrative	
		factors	dataset are not		divisions in	
		associated	provided in the		Bangladesh	
		with the	available		during 2023.	
		2022-2023	sources.			
		dengue				
		outbreak in				
		Bangladesh.				
Mapping the	Accurately	The study	Researchers	The study	The machine	
spatial	mapping the	aimed to	collected a total	employed	learning-	
distribution	spatial distribution	predict the	of 1,066 female	machine	based	
of the dengue	and predicting the	abundance of	adult Aedes	learning	approach	
vector Aedes	abundance of	female adult	aegypti from	techniques to	successfully	
aegypti and	Aedes aegypti are	Aedes aegypti	four villages in	analyze the	identified key	
predicting its	crucial for	in	northeastern	collected data,	factors	
abundance in	developing	northeastern	Thailand during	incorporating	influencing	
northeastern	effective vector	Thailand by	January-	socioeconomic	Aedes aegypti	
Thailand	control strategies	analyzing	December	, climate	abundance,	
using	and early warning	socio-	2019.	change,	providing	
machine-	systems for	ecological		dengue	valuable	
learning	dengue	and landscape		knowledge,	insights for	
approacn [2]	prevention.	a mashing		attitude and	targeted	
		a machine		practices	vector control	
		hearning-		(KAP), and	interventions.	
		based system.		factors to		
				nacions to		
				mosquite		
				abundance		
Application of	Dengue is a major	The study	A total of	The study	The study	
medical	global health	aims to	18 812 dengue	applied	found that a	
information	issue particularly	analyze	cases recorded	geoinformatics	rainfall	
system to	in hyperendemic	dengue case	from 2012 to	techniques and	nattern called	
system to	mnyperendenne	uclique case	110111 2012 10	icenniques allu	pattern caned	

Jurnal Sistem Informasi dan Teknik Informatika, Vol. 3, No. 1, February 2025: 25-30

1.

identify	urban areas, where	data from	2019 in Ipoh,	statistical	"wet-dry
dengue	controlling	Malaysia's e-	Malaysia, were	analysis to	steps" could
outbreak	outbreaks requires	Dengue	retrieved from	identify key	be a key
factors:	systematic data	system to	the e-Dengue	outbreak	outbreak
Insights from	collection and	improve	system and	triggers,	trigger,
a	analysis.	epidemiologic	combined with	focusing on	identified
hyperendemic		al	relevant	rainfall trends,	high-risk
city in		understanding	environmental	socio-	dengue
Malaysia [3]		by integrating	and	environmental	reservoir
•		meteorologica	meteorological	conditions, and	zones, and
		1,	data.	demographic	highlighted
		geoinformatic		factors like	age-related
		s, and socio-		age.	variations in
		environmental		C	blood cell.
		factors.			
Dynamic	Dengue fever.	The study	The	The method	The study
mapping of	transmitted by	developed a	components of	was applied on	found strong
dengue basic	mosquitoes, poses	method to	the R0 formula	Reunion	agreements
reproduction	significant public	produce time-	were derived	Island, where	between the
number [4]	health challenges.	varving maps	partly from a	the mosquito	observed
	particularly in	for dengue	mosquito	Aedes	epidemiologic
	tropical regions	transmission	population	albopictus has	al patterns
	like Reunion	risk by	dynamics	been	and predicted
	Island.	estimating the	model	responsible for	RO
		spatial basic	integrating	large dengue	distribution
		reproduction	meteorological	outbreaks	and temporal
		number (R0)	and	outoround.	dynamics
		using the	environmental		demonstrating
		Ross-	variables and		the relevance
		Macdonald	partly from		and efficiency
		framework	temperature-		of the
		and	dependent		spatialized R0
		differential	functions of		to develop an
		equations.	vector		operational
		• quantono	competence and		dynamic
			the extrinsic		mapping tool
			incubation		impping tool
			period.		
Recent	Dengue fever is a	The article	The review	The authors	The review
advances in	significant global	reviews	synthesizes	analyze and	highlights
dengue	health concern,	recent	findings from	comment on	significant
pathogenesis	necessitating a	advancements	various studies	recent	progress in
and clinical	comprehensive	in	on dengue virus	research,	understanding
management	understanding of	understanding	infection,	focusing on the	dengue
[5]	its pathogenesis	dengue	immune	role of the	pathogenesis
	and the	pathogenesis,	responses, and	dermis in	and
	development of	immunity,	clinical trials	infection,	immunity, as
	effective clinical	and clinical	related to	immune	well as
	management	research on	vaccines and	response	advancements
	strategies.	vaccines and	treatments.	mechanisms,	in clinical
		therapeutics.		and	research
				evaluations of	aimed at
				therapeutic	improving
				interventions.	diagnosis, risk
					prediction,
					and disease

A Data-Driven Approach to Dengue Fever (Mico)

27

20	
20	

					alassification
Donco	Porsonal cara	The study	Odor samplas	Using gas	The findings
residential	products such as	investigated	were collected	chromatograph	revealed that
aroog	soons introduce	how different	from voluntoors'		
arcas	soaps, introduce	now unicidit	forcerms before	y-mass	application
flow in	volatile organic	soans alter	and after	(GC MS) the	significantly
donguo voetor	compounds	human odor	washing with	(OC-IVIS), the	modifies
mosquito	(VOC_s) to human	profiles and	four popular	analyzed the	human odor
Ander	(vocs) to numan	subsequently	soan brands:	chemical	numan ouor
albonictus [6]	influencing	affect	Dial Dove	composition of	certain soans
	mosquito host	mosquito	Nativo and	the collected	increasing
	selection	attraction	Simple Truth	odor samples	and others
	selection.	attraction.	Simple Hum.	and conducted	decreasing
				behavioral	attractiveness
					to
				assays to	mosquitoes
				mosquito	affacts linked
				responses to	to specific
				these altered	chemical
				odors	components
				00013.	in the soans
Deconstruction	Dengue fever is a	The article	The review	The authors	The review
σ "malaria".	significant global	reviews	synthesizes	analyze and	highlights
g maiaria . West Africa	health concern	recent	findings from	comment on	significant
os the next	nearth concern,	advancements	various studies	recent	progress in
front for	comprehensive	in	on dengue virus	research	understanding
dengue	understanding of	understanding	infection	focusing on the	dengue
fever	its nathogenesis	dengue	immune	role of the	nathogenesis
surveillance	and the	nathogenesis	responses and	dermis in	and
and control	development of	immunity	clinical trials	infection	immunity as
[7]	effective clinical	and clinical	related to	immune	well as
[']	management	research on	vaccines and	response	advancements
	strategies	vaccines and	treatments	mechanisms	in clinical
	strategies.	therapeutics	troutinents.	and	research
		ulerupeuties.		evaluations of	aimed at
				therapeutic	improving
				interventions.	diagnosis, risk
					prediction.
					and disease
					classification.
Leveraging	Extraintestinal	The study	Researchers	By identifying	The study
livestock	pathogenic	employed a	analyzed a	17 source-	estimated that
movements to	Escherichia coli	comparative	collection of	associated	approximately
urban	(ExPEC) can	genomic	3,111	mobile genetic	8% of human
slaughterhous	cause severe	analysis to	contemporaneo	elements,	extraintestinal
es for wide-	infections in	identify	us,	predominantly	E. coli
spread	humans, and	mobile	geographically	plasmids and	infections,
Rift Valley	understanding	genetic	matched	bacteriophages	primarily
fever virus	their zoonotic	elements	clinical and	, the team	urinary tract
surveillance	origins is crucial	associated	meat-source E.	integrated	infections, in
in Western	for public health.	with specific	coli isolates.	these findings	the study
Kenya [8]		sources,		into a Bayesian	population
		aiming to		latent class	were caused
		trace the		model to	by foodborne
		origins of		predict the	zoonotic E.

Jurnal Sistem Informasi dan Teknik Informatika, Vol. 3, No. 1, February 2025: 25-30

Time series	Coccidioidomycos	clinical E. coli isolates. This study	The study uses	origins of clinical E. coli isolates. The LSTM	coli, with certain lineages like ST131-H22 and ST58 exhibiting particularly high virulence potential. The LSTM
forecasting of	is, or Valley fever.	applies Long	daily	model	model
Vallev fever	is a growing	Short-Term	pneumonia case	incorporates	effectively
infection in	public health	Memory	records from	multiple	forecasts CM
Maricopa	concern, and	(LSTM)	Maricopa	influencing	trends with
County, AZ	understanding its	networks to	County,	factors,	low mean
using LSTM	influencing factors	predict CM	Arizona,	including	squared error
[9]	can help improve	cases by	spanning 2020	climate	(MSE),
	disease	analyzing	to 2022, along	variables and	though
	forecasting and	pneumonia	with	COVID-19-	accuracy
	management.	cases, weather	meteorological	related	declines for
		patterns, air	and	lifestyle	longer
		quality, and	environmental	changes, while	prediction
		behavioral	data such as	considering	windows,
		changes due	temperature,	their	with 10-day
		to COVID-19.	precipitation,	correlation and	and 30-day
			wind speed, and	time-lag	models
			air pollution	effects on CM	showing the
			levels.	prevalence.	best
Establishment	Dan man farmen	Desservelsens	The storder	Eald releases	The second lb D
Establishment	Dengue fever,	Researchers	The study	Field releases	The WAIDB
of wordachia	A adas asgunti	Wolhoshio	Wolbachia	of wordacilia-	stram
in Malaysian	mosquitoes poses	strain wAlbB	establishment	mosquitoes	established in
Populations	a significant	into local	and mosquito	were	the target
of Aedes	health threat in	Aedes aegynti	nonulation	conducted	mosquito
aegynti for	Malaysia	populations to	dynamics	followed by	nonulations
Dengue	prompting	assess its	across multiple	regular	indicating its
Control [10]	exploration of	potential in	Malaysian sites	sampling to	promise as a
[- •]	innovative control	reducing	over a specified	evaluate	dengue
	methods.	dengue	period.	infection	control
		transmission.	*	frequencies	strategy in
				and impacts on	Malaysia.
				mosquito	
				populations.	

2. DISCUSSION

The growing threat of dengue fever has led to an urgent need for data-driven approaches to understand its spread and devise effective control strategies. Several recent studies have focused on analyzing epidemiological trends, mapping mosquito populations, and predicting outbreak factors. For example, the 2023 dengue outbreak in Bangladesh was studied using spatial and statistical tools to investigate its unprecedented spread, while a machine-learning approach was used in Thailand to predict Aedes aegypti abundance based on socio-ecological and environmental factors. Similarly, Malaysia's hyperendemic urban areas were analyzed through medical information systems, integrating meteorological and geoinformatics data to identify key outbreak triggers, such as the "wet-dry steps" rainfall pattern. These studies highlight how a combination of advanced computational methods and real-world datasets can help improve surveillance and response efforts.

A Data-Driven Approach to Dengue Fever (Mico)

In addition to epidemiological analysis, research has also focused on modeling dengue transmission and identifying key risk factors. A study on Reunion Island utilized dynamic mapping techniques based on the basic reproduction number (R0) to estimate dengue risk over time, integrating mosquito population dynamics and environmental conditions. Meanwhile, a comprehensive review of dengue pathogenesis examined the latest advancements in immune response mechanisms and vaccine development, shedding light on potential improvements in clinical management and risk prediction. Another intriguing study explored how urbanization influences mosquito gene flow, revealing that high-density residential areas can facilitate the spread of Aedes albopictus, further complicating control efforts. These findings emphasize the importance of both environmental and biological factors in shaping dengue transmission patterns. On the prevention and intervention front, innovative strategies are being explored to mitigate dengue outbreaks. One study demonstrated the successful establishment of the Wolbachia strain wAlbB in Malaysian Aedes aegypti populations, providing a promising biocontrol method to reduce dengue transmission. Additionally, predictive models [11, 12] such as Long Short-Term Memory (LSTM) networks have been employed to forecast disease prevalence, as seen in the case of Valley fever in Arizona, where environmental and behavioral factors were integrated into forecasting models. These advancements illustrate how technology and interdisciplinary approaches can enhance vector control and disease prediction, ultimately aiding public health efforts in managing mosquito-borne illnesses like dengue.

3. CONCLUSION

The integration of data-driven approaches in dengue surveillance and control has demonstrated significant potential in improving outbreak prediction, risk assessment, and intervention strategies. By leveraging Geographic Information Systems (GIS), machine learning, and real-time environmental data, researchers have successfully identified key factors influencing dengue transmission, such as climate patterns, mosquito abundance, and urbanization. Studies from Bangladesh, Thailand, Malaysia, and Reunion Island highlight the effectiveness of spatial mapping, medical information systems, and epidemiological modeling in refining surveillance efforts. Moreover, innovative biocontrol methods like Wolbachia-based mosquito interventions and predictive modeling using Long Short-Term Memory (LSTM) networks further enhance the capacity to mitigate dengue risks. As technological advancements continue to evolve, integrating interdisciplinary methodologies will be crucial in developing more precise and proactive public health strategies to combat the growing threat of dengue fever.

REFERENCES

- R. T. Subarna and Z. Al Saiyan, "Understanding the unprecedented 2023 dengue outbreak in Bangladesh: a data-driven analysis," *IJID Reg.*, vol. 12, no. June, p. 100406, 2024, doi: <u>https://doi.org/10.1016/j.ijregi.2024.100406</u>.
- [2] S. Rahman *et al.*, "Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach," vol. 13, no. June, 2021, doi: <u>https://doi.org/10.1016/j.onehlt.2021.100358</u>.
- [3] C. K. Ng, S. Linus-lojikip, K. Mohamed, and A. Hss, "International Journal of Medical Informatics Application of medical information system to identify dengue outbreak factors : Insights from a hyperendemic city in Malaysia," *Int. J. Med. Inform.*, vol. 177, no. May, p. 105162, 2023, doi: <u>https://doi.org/10.1016/j.ijmedinf.2023.105162</u>.
- [4] M. Haramboure, P. Degenne, S. Benkimoun, and A. Tran, "Results in Physics Dynamic mapping of dengue basic reproduction number," vol. 29, 2021, doi: <u>https://doi.org/10.1016/j.rinp.2021.104687</u>.
- [5] C. P. Simmons et al., "Recent advances in dengue pathogenesis and clinical management," vol. 33, pp. 7061–7068, 2015.
- [6] H. Yeo, Z. Tan, T. Ren, H. Tan, and F. E. Rheindt, "iScience II Dense residential areas promote gene flow in dengue vector mosquito Aedes albopictus," *ISCIENCE*, vol. 26, no. 9, p. 107577, 2023, doi: <u>https://doi.org/10.1016/j.isci.2023.107577</u>.
- [7] J. Stoler, F. Anto, J. N. Fobil, and G. A. Awandare, "Acta Tropica Deconstructing ' malaria': West Africa as the next front for control," 134. dengue fever surveillance and Acta Trop., vol. pp. 58-65. 2014 doi: https://doi.org/10.1016/j.actatropica.2014.02.017.
- [8] K. Nicole, B. Alberto, K. Omondi, A. Winter, K. Seetah, and A. Desiree, "Leveraging livestock movements to urban slaughterhouses for wide-spread Rift Valley fever virus surveillance in Western Kenya," *One Heal.*, vol. 15, no. July, p. 100457, 2022, doi: <u>https://doi.org/10.1016/j.onehlt.2022.100457</u>.
- [9] X. Jin et al., "Articles Time series forecasting of Valley fever infection in Maricopa County, AZ using LSTM," Lancet Reg. Heal. - Am., vol. 43, p. 101010, 2025, doi: <u>https://doi.org/10.1016/j.lana.2025.101010</u>.
- [10] A. Noorafizah et al., "Establishment of Wolbachia Strain w AlbB in Malaysian Populations of Aedes aegypti for Dengue Article Establishment of Wolbachia Strain w AlbB in Malaysian Populations of Aedes aegypti for Dengue Control," Curr. Biol., vol. 29, no. 24, pp. 4241-4248.e5, 2019, doi: https://doi.org/10.1016/j.cub.2019.11.007.
- [11] A. Sanmorino and H. Di Kesuma, "Fine-tuning a pre-trained ResNet50 model to detect distributed denial of service attack," vol. 13, no. 2, pp. 1362–1370, 2024, doi: <u>https://doi.org/10.11591/eei.v13i2.7014</u>.
- [12] A. Sanmorino and D. P. Rini, "Analyzing Factors Contributing to Research Performance using Backpropagation Neural Network and Support Vector Machine," vol. 16, no. 1, pp. 153–172, 2022.

Jurnal Sistem Informasi dan Teknik Informatika, Vol. 3, No. 1, February 2025: 25-30