
 Jurnal Sistem Informasi dan Teknik Informatika
 Vol. 3, No. 1, February 2025, pp. 19~24

 E-ISSN: 3031-2698 (ONLINE) 19

Journal homepage: https://journal.lenterailmu.com/index.php/jafotik

AI-Augmented Code Generation

Juan Jacob Erizo

Universidad Galileo, Guatemala

Article Info Abstract

Article history:

Received Feb 05
th

, 2025

Revised Feb 11
th

, 2025

Accepted 15
th

, 2025

 AI-augmented code generation is transforming software development by

enhancing productivity, reducing repetitive tasks, and improving code

quality. Tools like GitHub Copilot, OpenAI Codex, and IntelliCode assist

developers by providing real-time code suggestions, generating functions

from natural language prompts, and detecting potential errors. This

technology simplifies coding workflows, allowing programmers to focus on

complex problem-solving rather than routine coding tasks.AI-powered tools

rely on deep learning models trained on vast code repositories to

understand context and generate relevant code snippets. While these tools

significantly speed up development, they also introduce challenges such as

security risks, computational costs, and the need for human oversight.

Despite these concerns, AI-driven coding assistants are proving invaluable

in modern software engineering, supporting applications in cloud

computing, competitive programming, and full-stack development.Beyond

simple code suggestions, AI assists with debugging, performance

optimization, and even full project generation. As AI models continue to

evolve, their integration into software development will further enhance

efficiency and accessibility.

Keywords: AI-augmented code generation, Software development, Deep

learning models

Abstrak

Pembuatan kode yang didukung AI mengubah pengembangan perangkat

lunak dengan meningkatkan produktivitas, mengurangi tugas yang berulang,

dan meningkatkan kualitas kode. Alat seperti GitHub Copilot, OpenAI

Codex, dan IntelliCode membantu pengembang dengan memberikan saran

kode secara real-time, membuat fungsi dari perintah bahasa alami, dan

mendeteksi potensi kesalahan. Teknologi ini menyederhanakan alur kerja

pengodean, yang memungkinkan programmer untuk fokus pada pemecahan

masalah yang kompleks daripada tugas pengodean rutin. Alat yang didukung

AI mengandalkan model pembelajaran mendalam yang dilatih pada

repositori kode yang luas untuk memahami konteks dan membuat cuplikan

kode yang relevan. Sementara alat ini secara signifikan mempercepat

pengembangan, alat ini juga menghadirkan tantangan seperti risiko

keamanan, biaya komputasi, dan kebutuhan akan pengawasan manusia.

Terlepas dari kekhawatiran ini, asisten pengodean yang digerakkan AI

terbukti sangat berharga dalam rekayasa perangkat lunak modern,

mendukung aplikasi dalam komputasi awan, pemrograman kompetitif, dan

pengembangan tumpukan penuh. Di luar saran kode sederhana, AI

membantu debugging, pengoptimalan kinerja, dan bahkan pembuatan

proyek penuh.

Kata kunci: AI-augmented code generation, Software development, Deep

learning models

Corresponding Author:

Juan Jacob Erizo

Email: muhrizan@tutanota.com

Guatemala

This is an open access article under the CC BY-SA license.

mailto:muhrizan@tutanota.com
https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 3031-2698

Jurnal Sistem Informasi dan Teknik Informatika, Vol. 3, No. 1, February 2025: 19-24

20

1. INTRODUCTION

The way we write and debug code is evolving, thanks to AI-augmented code generation. Instead of

manually writing every line, developers now have intelligent assistants that can suggest, generate, and even

refine code in real time. Tools like GitHub Copilot [1], powered by OpenAI’s Codex [2], and IntelliCode [3]

from Microsoft are revolutionizing software development by offering context-aware code completions,

debugging suggestions, and even full-function implementations. This shift isn't just about making coding

faster; it's about transforming how developers approach problem-solving, reducing repetitive tasks, and

allowing them to focus on more complex and creative aspects of software engineering.

Imagine a developer working on a Python project and needing to write a function to check if a

number is prime. Instead of manually coding the logic from scratch, they can simply type a comment like #
Function to check if a number is prime, and AI-powered tools can generate the corresponding

function instantly. This automation isn’t just about convenience; it also reduces syntax errors and helps

enforce best coding practices. AI doesn’t replace developers—it acts as a powerful assistant that enhances

productivity, making coding more intuitive and accessible.

AI-augmented code generation has been studied extensively in recent years, especially with the rise of

deep learning models trained on massive codebases. Early research focused on rule-based approaches and

syntax-driven generation, but the introduction of transformer models, like OpenAI’s GPT-based Codex and

Google’s BERT, has significantly improved AI’s ability to understand context and generate human-like code.

These models analyze vast repositories of public code, learning patterns, best practices, and common bugs to

provide meaningful suggestions. One notable study explored how AI models, integrated into popular

development environments, could reduce code-writing effort by up to 30%. Their research showed that AI-

assisted coding speeds up development, particularly for repetitive or boilerplate code, and can even improve

code quality by suggesting optimizations. However, they also highlighted concerns about AI-generated code

introducing security vulnerabilities or unintended biases [4], emphasizing the need for careful human oversight.

Despite these challenges, AI-powered coding assistants are becoming indispensable tools for both novice and

experienced programmers.

To see AI-augmented code generation in action, consider GitHub Copilot. Suppose a developer needs

a Python function to calculate the factorial of a number. By simply typing a comment like:

Function to calculate factorial

Copilot might generate the following code:

def factorial(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)

AI can also assist in debugging. Suppose a JavaScript developer writes a function that fetches user data

but forgets to handle null values. AI might suggest an improved version:

function getUserData(user) {
 if (!user) {
 return "No user data available";
 }
 return user.data;
}

These tools not only speed up coding but also help prevent common errors, ensuring that code is both

efficient and reliable. AI-augmented code generation is not without challenges. While it significantly boosts

productivity, developers still need to validate AI-generated code for security, performance, and maintainability.

AI models can occasionally generate inefficient or even incorrect code, meaning human oversight remains

crucial.

Jurnal Sistem Informasi dan Teknik Informatika ISSN: 3031-2698

 AI-Augmented Code Generation (Juan Jacob Erizo)

21

2. DISCUSSION

In the rapidly evolving world of software development, AI-powered tools are transforming the way

developers write, debug, and optimize code. AI-augmented code generation tools not only speed up coding

but also help reduce errors, improve efficiency, and even generate entire programs from simple natural

language prompts. From GitHub Copilot's real-time code suggestions to OpenAI Codex's ability to turn plain

English into working code, these tools are making programming more accessible and intuitive. Whether

you're working on web applications, cloud-based solutions, or competitive programming challenges, AI can

assist in streamlining the development process. Table 1 below highlights 10 powerful AI-driven coding

assistants, their purposes, and real-world code examples to demonstrate how they can be used in various

programming scenarios.

Table 1 – AI-Augmented Code Generation tools

No

.

AI Tool Purpose Example Code

1 GitHub

Copilot

Autocompletes

code snippets

and functions in

real-time.

Python:
def greet(name):
 return f"Hello,

{name}!"

2 Tabnine Provides AI-

powered code

suggestions for

multiple

languages.

JavaScript:
function add(a, b) {
 return a + b;
}

3 OpenAI

Codex [5,

6]

Generates code

from natural

language

prompts.

Python:

Prompt: "Write a function to calculate factorial"

Output:
def factorial(n):
 return 1 if n == 0

else n * factorial(n-1)

4 CodeT5 Assists in code

summarization,

generation, and

translation.

Python:

Input: "Reverse a string"

Output:
def reverse_string(s):
 return s[::-1]

5 DeepCode Detects

vulnerabilities

and optimizes

code.

Java:
// Suggests using try-with-resources
try

(BufferedReader br = new BufferedReader(new

FileReader("file.txt"))) {

System.out.println(br.readLine());
}

6 CodeWhisp

erer

AI-powered

assistant for

AWS cloud

applications.

Python:
import boto3
s3 =

boto3.client('s3')
s3.upload_file('file.

txt', 'mybucket', 'file.txt')

7 PolyCoder Generates and

auto-completes

open-source

code.

C++:
int sum(int a, int b) {
 return a +

b;
}

8 AlphaCode Solves

competitive

programming

problems.

Python:
def is_palindrome(s):
 return s == s[::-

1]

9 ChatGPT

(Code

Mode)

Assists in

debugging,

explaining, and

generating code.

JavaScript:
const greet = (name) => `Hello, ${name}!`;

10 GPT-

Engineer

Builds entire

software

Django App (Generated):
from django.http import HttpResponse
def

 ISSN: 3031-2698

Jurnal Sistem Informasi dan Teknik Informatika, Vol. 3, No. 1, February 2025: 19-24

22

applications from

requirements.

home(request):
 return

HttpResponse("Welcome to AI-generated

Django App!")

 AI-augmented code generation is revolutionizing the way developers approach coding tasks, from

simple function completions to generating entire software applications. Tools like GitHub Copilot, Tabnine,

and OpenAI Codex act as intelligent coding assistants, predicting and suggesting relevant code snippets in

real-time. These tools significantly reduce the time spent on repetitive coding patterns, allowing developers

to focus more on logic and problem-solving. For instance, OpenAI Codex can take a simple natural language

prompt—such as "Write a function to calculate factorial"—and instantly generate a fully functional Python

script. Meanwhile, DeepCode goes beyond mere code suggestions by detecting vulnerabilities and optimizing

security, ensuring that the generated code is functional and robust. Beyond basic coding assistance, AI also

plays a crucial role in specialized domains. AWS CodeWhisperer is tailored for cloud-based development,

helping engineers work seamlessly with AWS services by generating relevant API calls and configurations.

AlphaCode, developed by DeepMind, takes AI-driven programming to another level by solving competitive

programming problems, showcasing how machine learning models can reason through complex algorithms.

Meanwhile, GPT-Engineer has the potential to generate entire software projects based on high-level

descriptions, minimizing the manual effort required in early-stage development. While AI-generated code is

not yet perfect and still requires human oversight, these tools are undeniably shaping the future of software

engineering, making coding more accessible, efficient, and innovative.

 AI-augmented code generation relies on machine learning models, primarily trained on vast datasets

of code from repositories, documentation, and forums [7, 8, 9, 10]. These models, such as OpenAI Codex,

GPT-4, and CodeT5, learn patterns, syntax, and best practices in different programming languages. When a

developer inputs a partial function, a comment describing the desired functionality, or even a natural

language prompt, the AI predicts the most relevant code snippet. This is achieved using natural language

processing (NLP) and deep learning techniques, such as transformers, to generate code that aligns with

standard programming practices.

2.1. Example of AI-Augmented Code Generation in Action

1. Generating Code from a Prompt (OpenAI Codex Example)

A developer might type the following instruction in an AI-assisted code editor:

Prompt:

def is_prime(n):
 if n < 2:
 return False
 for i in range(2, int(n**0.5) + 1):
 if n % i == 0:
 return False
 return True

Example usage
print(is_prime(11)) # Output: True

The AI understands the request, recognizes the logic required for a prime number check, and

generates optimized code instantly.

2. Auto-Completion While Coding (GitHub Copilot Example)

A developer starts writing a function in JavaScript:

 function fetchData(url) {
 return fetch(url)

At this point, AI-assisted coding tools like GitHub Copilot will suggest:

Jurnal Sistem Informasi dan Teknik Informatika ISSN: 3031-2698

 AI-Augmented Code Generation (Juan Jacob Erizo)

23

 .then(response => response.json())
 .then(data => console.log(data))
 .catch(error => console.error("Error fetching data:", error));
 }

The AI predicts the next logical steps, helping developers write code faster and with fewer errors.

3. AI Detecting and Fixing Bugs (DeepCode Example)

A developer writes the following Python code:

 def divide(a, b):
 return a / b

AI-assisted tools like DeepCode or CodeQL will analyze the function and suggest adding error

handling to prevent division by zero:

 def divide(a, b):
 if b == 0:
 return "Error: Division by zero"
 return a / b

This helps improve code quality and security, reducing runtime errors. AI-augmented code

generation is transforming software development by making it faster, more efficient, and accessible. Whether

through code completion, generation from natural language, or error detection, these tools help developers

write better code with minimal effort. While human oversight is still necessary, AI is undoubtedly an

invaluable assistant in modern programming workflows.

2.2. Complexity of AI-Augmented Code Generation (Time & Cost Analysis)

1. Time Complexity

AI-augmented code generation significantly reduces development time by automating repetitive

coding tasks, assisting with debugging, and generating optimized solutions quickly. However, the

computational complexity behind AI-driven code generation varies depending on the model size, processing

power, and task complexity:

a. Code Suggestion & Autocompletion (Low Complexity - O(1) to O(n))

 Tools like GitHub Copilot and Tabnine offer real-time suggestions, usually requiring

minimal processing time (near O(1)) since they predict the next few tokens based on

context.

 If the AI generates entire functions or multi-line code, the complexity increases to about

O(n), where n is the number of generated lines.

b. Full Code Generation from Natural Language (Moderate Complexity - O(n log n))

 Generating complete programs from text descriptions (e.g., GPT-Engineer or OpenAI

Codex) requires multiple processing steps, including understanding context, retrieving

relevant patterns, and ensuring syntax correctness.

 The complexity can range between O(n log n) to O(n²), where n represents the number of

lines or tokens generated.

c. Bug Detection & Optimization (Higher Complexity - O(n²) to O(2ⁿ))

 AI-powered tools like DeepCode and CodeQL analyze entire codebases, requiring deep

pattern matching and static analysis.

 The time complexity can reach O(n²) or higher, especially when analyzing large projects

with extensive dependencies.

2. Computational & Financial Cost

AI-augmented code generation tools rely on large-scale neural networks (e.g., transformer models

like GPT-4 or CodeT5), which require significant computational resources.

a. Cloud-Based AI Models (Higher Cost)

 ISSN: 3031-2698

Jurnal Sistem Informasi dan Teknik Informatika, Vol. 3, No. 1, February 2025: 19-24

24

 Services like GitHub Copilot, OpenAI Codex, and AWS CodeWhisperer run on cloud

GPUs or TPUs, which involve high computational costs.

 OpenAI’s API pricing can range from $0.002 per token to $0.12 per 1,000 tokens,

depending on the model size and complexity.

 Training and maintaining these models can cost millions of dollars due to high-end

hardware requirements and electricity consumption.

b. On-Premise AI Models (Lower Cost but Limited Power)

 Some AI tools, like PolyCoder, allow local deployments, reducing cloud dependency.

 However, running AI models locally requires high-performance GPUs, increasing initial

setup costs but reducing long-term expenses.

3. Trade-Offs Between Speed & Accuracy

AI-generated code is fast but not always perfect, requiring human intervention for:

a. Ensuring correctness & security (e.g., preventing SQL injection, memory leaks).

b. Adapting AI-generated code to specific project requirements.

c. Debugging AI-suggested errors, as models may produce incorrect or inefficient code.

AI-augmented code generation saves time but introduces computational and financial costs. While

basic code completions are efficient and low-cost, complex code generation or full-program synthesis

demands more processing power and resources. Companies must balance efficiency, accuracy, and cost when

integrating AI into their development workflows.

3. CONCLUSION

AI-augmented code generation is transforming the way developers write software, making the

process faster, more efficient, and less repetitive. With tools like GitHub Copilot, OpenAI Codex, and

DeepCode, programmers can receive real-time coding suggestions, automate function generation from simple

text prompts, and even detect potential issues before they become problems. While these AI-powered

assistants streamline development and enhance productivity, they also come with challenges—such as

security risks, computational costs, and the need for human oversight to ensure accuracy. Despite these

hurdles, AI-driven coding tools are quickly becoming essential in modern software development, helping

developers focus on creative problem-solving while leaving routine tasks to intelligent automation.

REFERENCES
[1] S. L. France, ―Navigating software development in the ChatGPT and GitHub Copilot era,‖ Bus. Horiz., vol. 67, no. 5, pp. 649–

661, 2024, doi: https://doi.org/10.1016/j.bushor.2024.05.009.
[2] I. A. Zahid et al., ―Unmasking large language models by means of OpenAI GPT-4 and Google AI: A deep instruction-based

analysis,‖ Intell. Syst. with Appl., vol. 23, no. February, p. 200431, 2024, doi: https://doi.org/10.1016/j.iswa.2024.200431.

[3] Y. Xiao, X. Zuo, X. Lu, J. Song, and X. Cao, ―Promises and perils of using Transformer-based models for SE research,‖ Neural

Networks, vol. 184, no. July 2024, p. 107067, 2025, doi: https://doi.org/10.1016/j.neunet.2024.107067.

[4] D. Cotroneo, R. De Luca, and P. Liguori, ―DeVAIC: A Tool for Security Assessment of AI-generated Code,‖ Inf. Softw. Technol.,

vol. 177, no. April 2024, p. 107572, 2024, doi: https://doi.org/10.1016/j.infsof.2024.107572.
[5] U. Bezirhan and M. von Davier, ―Automated reading passage generation with OpenAI’s large language model,‖ Comput. Educ.

Artif. Intell., vol. 5, no. May, p. 100161, 2023, doi: https://doi.org/10.1016/j.caeai.2023.100161.

[6] K. S. Kalyan, ―A survey of GPT-3 family large language models including ChatGPT and GPT-4,‖ Nat. Lang. Process. J., vol. 6,
no. December 2023, p. 100048, 2024, doi: https://doi.org/10.1016/j.nlp.2023.100048.

[7] D. Benfenati, G. M. De Filippis, A. M. Rinaldi, C. Russo, and C. Tommasino, ―A Retrieval-augmented Generation application for

Question-Answering in Nutrigenetics Domain,‖ Procedia Comput. Sci., vol. 246, no. C, pp. 586–595, 2024, doi:
https://doi.org/10.1016/j.procs.2024.09.467.

[8] A. Namoun, A. Alrehaili, Z. U. Nisa, H. Almoamari, and A. Tufail, ―Predicting the usability of mobile applications using AI

tools: The rise of large user interface models, opportunities, and challenges,‖ Procedia Comput. Sci., vol. 238, pp. 671–682, 2024,
doi: https://doi.org/10.1016/j.procs.2024.06.076.

[9] R. Pierdicca, F. Tonetto, M. Paolanti, M. Mameli, R. Rosati, and P. Zingaretti, ―DeepReality: An open source framework to

develop AI-based augmented reality applications,‖ Expert Syst. Appl., vol. 249, no. PA, p. 123530, 2024, doi:
https://doi.org/10.1016/j.eswa.2024.123530.

[10] K. Misiejuk, R. Kaliisa, and J. Scianna, ―Augmenting assessment with AI coding of online student discourse: A question of

reliability,‖ Comput. Educ. Artif. Intell., vol. 6, no. December 2023, p. 100216, 2024, doi:
https://doi.org/10.1016/j.caeai.2024.100216.

https://doi.org/10.1016/j.bushor.2024.05.009
https://doi.org/10.1016/j.iswa.2024.200431
https://doi.org/10.1016/j.neunet.2024.107067
https://doi.org/10.1016/j.infsof.2024.107572
https://doi.org/10.1016/j.caeai.2023.100161
https://doi.org/10.1016/j.nlp.2023.100048
https://doi.org/10.1016/j.procs.2024.09.467
https://doi.org/10.1016/j.procs.2024.06.076
https://doi.org/10.1016/j.eswa.2024.123530
https://doi.org/10.1016/j.caeai.2024.100216

